yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Whatever happened to the hole in the ozone layer? - Stephanie Honchell Smith


3m read
·Nov 8, 2024

In the 1980s, the world faced a huge problem: there was a rapidly expanding hole in the ozone layer. So, what happened? And is it still there? Let’s go back to the beginning. The Sun makes life on Earth possible, but too much exposure to its UV radiation damages plant and animal DNA. Thankfully, about 98% of that radiation is absorbed by ozone molecules dispersed in the stratosphere, which are continuously broken apart and reformed in this process, maintaining a delicate equilibrium.

But in the early 1970s, two chemists— Mario Molina and Sherwood Rowland— demonstrated that widely used chemicals called chlorofluorocarbons, or CFCs, could upset this balance. CFCs were developed in the 1920s by three US-based corporations as coolants for refrigerators. Unlike existing alternatives— such as ammonia or methyl chloride— CFCs were non-flammable and non-toxic— meaning they wouldn't burst into flames or cause deadly gas leaks. They also made great propellants, foaming agents, and fire-retardants.

CFCs soon found their way into a variety of everyday items and became a multi-billion dollar per year industry. In the lower atmosphere, CFCs don’t break down or react with other molecules. But Molina and Rowland showed that in the stratosphere, they're broken apart by UV light, releasing chlorine atoms. These then react with ozone, destroying it faster than it can be replenished. A single chlorine atom can destroy thousands of ozone molecules before finally reacting with something else and forming a stable molecule.

Seeing the threat to their bottom line, CFC producers pushed back to discredit the scientists, even accusing them of working for the KGB. Initial estimates showed that within 60 years, CFCs could reduce ozone concentrations by 7%. But by 1985, it became clear that ozone depletion, especially over Antarctica, was happening much faster. Here, the extremely cold temperatures and unique structure of Antarctic clouds accelerated ozone loss. Scientists stationed in Antarctica noticed a massive drop in overhead ozone occurring every spring.

Satellite data revealed the vast extent of these losses and chemical tests confirmed that the cause was unquestionably CFCs. NASA soon released visualizations, which were broadcast around the world and captured public attention. If ozone depletion continued, rates of skin cancer would skyrocket. Photosynthesis would be impaired, making plants— including rice, wheat, and corn— less productive and more susceptible to disease. Global agricultural production would plummet, and entire ecosystems would collapse.

But many politicians— weighing immediate economic concerns over long-term ones— disagreed about what to do. The fight to ban CFCs found two unlikely allies in US President Ronald Reagan and UK Prime Minister Margaret Thatcher. Despite their general opposition to government regulation, Reagan, who had undergone treatment for skin cancer, and Thatcher, who was trained as a chemist, recognized the need for immediate action. The US and UK, along with Canada, Norway, Sweden, and Finland, led calls for an international ban on CFCs.

In 1987, representatives signed the Montreal Protocol, requiring the rapid phasing out of CFCs and creating a fund to assist Global South countries in obtaining affordable, non-ozone depleting alternatives. It was later ratified by every country on Earth— the only treaty in history to achieve this. In 1995, Molina, Rowland, and their Dutch colleague Paul Crutzen were jointly awarded the Nobel Prize in Chemistry.

As the use of CFCs declined, the ozone hole began shrinking, and is predicted to disappear entirely by 2070. But we’re not out of the woods yet. While the ban was a win for the climate, as CFCs are potent greenhouse gases, the alternatives that replaced them— hydrofluorocarbons, or HFCs— are too. While generally less potent than CFCs, HFCs still trap more heat than carbon dioxide and are contributing to climate change.

To address this, in 2016, the Kigali Amendment was added to the Montreal Protocol, calling for an 85% cut in global HFCs by 2047. This alone could avoid up to 0.5°C of global warming by the end of the century. Today, as we face the existential threat of climate change, the Montreal Protocol serves as a model for the decisive global cooperation we need to combat it. The question is, what will it take for us to come together again?

More Articles

View All
How Rescue Dogs Are Helping Veterans With PTSD | National Geographic
My Dog Freedom is… I can’t say he’s a pet because that’s just… it’s not enough. Freedom not just changed my life; he did save my life. I was in a hard downward spiral, literally sitting in this chair, starving myself to death. I wouldn’t answer the phone,…
Love and Science | Genius
[Music] No, it must be an anomaly. Tight again! I already have 20 times. It’s not an anomaly. This sample must contain a new element, a radioactive element. It would have to be hundreds, no thousands of times stronger than uranium. We must isolate it. We…
Khanmigo Teacher Story - Ms. Bartsch
What I love most about using Conmigo is it gives me the agency as a teacher to be able to kind of set parameters for my classroom while still giving my students exposure to the AI that’s going to be a huge part of the world that they’re heading towards af…
Flying from Japan | 19 hours flight vlog🇯🇵
Hi guys, it’s me Ruri. Today I am back with another super long travel vlog. Our flight is going to be around 19 hours, and we’re gonna fly from Japan to the UK first, and from there we’re gonna fly back to Turkey. This is the Haneda Airport. If you watche…
Algorithms are Destroying Society
In 2013, Eric Loomis was pulled over by the police for driving a car that had been used in a shooting—a shooting, mind you, that he wasn’t involved in at all. After getting arrested and taken to court, he pleaded guilty to attempting to flee an officer an…
Volume density
In this video, we’re going to talk a little bit about density, and we’re especially going to talk about density in the context of volume. One simple way to think about density is it’s a quantity of something, and we’re going to think about examples of it …