yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
The presidential incumbency advantage | US government and civics | Khan Academy
What we’re going to do in this video is talk about the incumbent advantage. This is the idea that the person who is already in power, the incumbent, has an advantage in elections. In particular, we’re going to focus on presidential elections, although thi…
God is not a man with a beard on a throne in the clouds | Pete Holmes | Big Think
It’s funny, it’s almost a Hollywood cliché that people like me get turned onto Joseph Campbell when they go to Hollywood. But for me, it wasn’t to write a better screenplay. Because he taught us about the hero’s journey. I’m sure you’ve all heard about th…
The Debt Limit Explained
The debt limit is kind of a financial weapon of mass destruction chained to the United States government by the United States government. Confused? Then it’s time for The United States debt limit Explained. To understand the debt limit, you need to know …
The "bottom billion" - Paul Collier
[Music] [Music] So, can we dare to be optimistic? Well, the thesis of the bottom billion is that a billion people have been stuck living in economies that have been stagnant for 40 years and hence diverging from the rest of mankind. And so the real questi…
A school of hippos gives an aggressive warning sign | Primal Survivor: Extreme African Safari
(Exhales forcefully) But it’s not crocodiles I should have been watching out for. Instead, it’s one of the most temperamental animals out here. (Hippo snorting) Wow, there are a lot of eyes looking in my direction, a lot of ears pointed in my direction. T…
Are we living in a simulation? | Bill Nye, Joscha Bach, Donald Hoffman | Big Think
Bill Nye: Are we living in a video game? Are we actually part of a giant simulation? Joscha Bach: The question of whether we are living in a simulation is more related to something more narrow, that is: Is this computer program that we’re living in inten…