yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
Eliminate | Vocabulary | Khan Academy
What’s up, wordsmiths? This video is about the word eliminate. [Music] It’s a verb. It means to remove or get rid of something. The word comes to us from Latin, and it’s a combination of two parts: “ex,” which means out or away (think exit), and “limit,”…
Scott Cook - Founder and Chairman of the Executive Committee, Intuit | Khan Academy
All right, I think we’re ready to start. Anyone who wants to—anyone else wants to join us for the talk with Scott Cook, founder of Intuit? So I’ll just start. You know, for everyone here at Khan Academy who doesn’t know both Scott and Cigna Cook are, you …
15 Richest People in Media (& How They Built Their Fortunes)
The media industry is a dynamic sector that shapes our world and influences public opinion. From broadcasting to digital platforms, it connects us to news, entertainment, and information. But amidst these diverse ventures, some individuals have achieved r…
Fever Feels Horrible, but is Actually Awesome!
Fever feels bad. So we take medication to suppress it – but is this a good idea? It turns out fever is one of the oldest defenses against disease. What exactly is it, how does it make your immune defense stronger and should you take a pill to combat it? …
Real reason why I don't laugh
Hi guys, before starting the video, I want to do a quick disclaimer about this video. This video is not for entertainment purposes, or this video would not add any value to your life. So if you’re not super curious about why I don’t love, maybe don’t watc…
The Brachistochrone
[Music] Hey Vsauce, Michael here. If every single one of us held hands together in a chain of unity around Earth, would there be enough of us to go all the way around the planet? There are about seven and a half billion of us, and that’s a lot. But remem…