yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
Mysterious Purple Blob Surprises Scientists | National Geographic
[Music] I think you almost walked me through the rocks. I got it. I think we got little clams there. You have like that dark purple blob on the left. Purple, purple blob, purple blob, blob is a purplish, teeny tiny mama octopus. Yeah, come in my fingers …
Axe Ghost Daily 2024-08-12
Hey, my name’s Thomas. I am playing Ax Ghost; this is a game I’m working on. You can find a demo of Ax Ghost on Steam. Uh, I’m playing the beta version, and I’ll be playing the daily challenge for today. I have the mirror and the centi Beed special weapon…
Wu-wei | The Art of Letting Things Happen
Once upon a time, a novice farmer indulged himself in motivational videos. He became familiar with ideas like the importance of ‘effort,’ the ‘hustle culture,’ and ‘work hard, play hard.’ After binge-watching for days, he walked onto his farm, fired up, …
Judging outliers in a dataset | Summarizing quantitative data | AP Statistics | Khan Academy
We have a list of 15 numbers here, and what I want to do is think about the outliers. To help us with that, let’s actually visualize the distribution of actual numbers. So let us do that. Here on a number line, I have all the numbers from one to 19. Let’…
Why invest in yourself? | Careers and education | Financial Literacy | Khan Academy
This chart right over here is at bls.gov. BLS stands for the Bureau of Labor Statistics, and in a pretty interesting trend here, it shows that the higher the degree level that someone gets, it is associated with higher median weekly earnings. Right? Becau…
Before the Flood - Trailer | National Geographic
We’ve known about this for decades, for over half a century. Try to have a conversation with anyone about climate change; people just tune out. Climate change, climate change, CH! The problem seems to be getting worse and worse and worse. The truth is, th…