yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
Intro to forces (part 2) | Physics | Khan Academy
Everything around us is being pushed and pulled in so many directions. For example, you may be pulling on a couch with your applied force, but friction will oppose that. Then there is gravity acting downwards, giving it its own weight. And then the floor …
Adding and subtracting polynomials of degree two | Algebra 1 (TX TEKS) | Khan Academy
So we have two different expressions here, and what I want you to do is pause this video and see if you can rewrite each of these as a simplified polynomial in standard form. So pause the video and have a go with that. All right, now let’s do this togeth…
Aretha Franklin Meets Dinah Washington | Genius: Aretha
[blues piano] DINAH WASHINGTON (Singing): What a difference a day made. 24 little hours brought the sun and the flowers where there used to be rain! My yesterday was blue, dear. C.L. FRANKLIN: Come on down here and join the party. Come on. DINAH WASHIN…
15 Life Changing Books Everyone Must Read
People read books for different reasons. Some do it for entertainment, others to kill time, and many others because they seek to improve their lives. A good book is meant to teach us something new about the world and to bring a unique perspective into our…
Moving Back To California
What did Tesla just do? They moved back into the state of California. Disney’s moving their jobs back from Florida to the state of California. It’s at the point now where some staffers are ready to quit their jobs over the matter. Many tech companies have…
Financial institutions and markets | Investments and retirement | Financial Literacy | Khan Academy
So let’s talk a little bit about financial institutions. There are many different types of financial institutions, but probably the most basic one that almost everyone encounters at some point in their life is a bank. At a bank, at the most basic level, t…