yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
The Origin of El Chapo | Narco Wars
[music playing] It was find everybody involved. Find them now. We knew there was an individual that was responsible for all the logistical movement of marijuana and then cocaine, but we weren’t sure who he was. So we raided house, after house, after hous…
Worked example: Derivative of ln(Ãx) using the chain rule | AP Calculus AB | Khan Academy
So we have here F of x being equal to the natural log of the square root of x. What we want to do in this video is find the derivative of F. The key here is to recognize that F can actually be viewed as a composition of two functions, and we can diagram t…
Epic Grand Canyon Hike: Thirst and Threats in the Godscape (Part 3) | National Geographic
Laughs, or iPhone moving out there. Oh, it looks like a swimming pool from here. Ooh, I don’t know if there’s water. It makes you a little stressed, to say the least. When we started this walk across Grand Canyon from 500 miles to the east of here, a frie…
Critiquing Startup Mobile Apps with Glide CEO
So after many requests, we are finally going to be doing a mobile app review. We’re going to run through them, we’re going to figure out what feedback we have, what’s working well, and hopefully help you for all the mobile apps that you’re designing out …
How To Invest In Cryptocurrency For Beginners In 2022 | THE TOP COINS TO BUY
What’s up, Graham? It’s guys here. So we gotta have a serious talk about cryptocurrency because recently it came to my attention that 55% of Bitcoin holders are brand new, having just made their first investment this year. Even though there’s a lot of op…
The Upcoming Stock Market Collapse | Round 2
What’s up? Grandma’s guys here. So, as usual, the market makes absolutely no sense and continues proving time and time again that anything can happen. For example, even though the NASDAQ just narrowly avoided its worst January ever in history, when asked …