yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
How to Get and Test Startup Ideas - Michael Seibel
There’s a common misconception that your idea has to be great in order to start a company, and the first thing I want to do is destroy that misconception. Personally, I was one of the cofounders of a company called Justin.tv. It later became a company cal…
How to be more disciplined (animated short story)
Oh, meet Lucas. He’s a young man about to enter college. He’s had a difficult life growing up with his only parent, his mother, and his younger sister. Due to his difficulties in facing his adversities, he’s lived a fairly unhealthy life and constantly in…
my 6am productive morning routine
Good morning! Hi guys, it’s me. Today I just woke up, as you can probably tell. I’m like super sleepy. It’s currently 8:20 AM. I was planning to wake up at 6:30 AM, but I snoozed my alarm a couple of times, and I didn’t realize it. And it’s currently 8:20…
Net Present Value: What Future Income Is Worth Today
Let’s talk about NPV. NPV is just the net present value of something. It’s when you say that stream of payments I’m gonna get in the future: what is that worth today? So a common example of this is you’re joining a startup company and you’re getting stoc…
No Flag Northern Ireland
Poor no-flag Northern Ireland. While England, Scotland, and Wales all have flags as countries in the United Kingdom, not her. But rather than a transparent skirt of technical correctness, which would be weird, BAM! These videos use this flag that’s often …
Have We Ever All BLINKED At The Same Time?
Has there ever been a moment in our history when no one was watching because every living human just happened to blink at the exact same time? Well, let’s see. Humans blink about once every 4 seconds, and a typical blink is about a third of a second long.…