yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
Love and Science | Genius
[Music] No, it must be an anomaly. Tight again! I already have 20 times. It’s not an anomaly. This sample must contain a new element, a radioactive element. It would have to be hundreds, no thousands of times stronger than uranium. We must isolate it. We…
The Market Revolution - part 1
So some historians have actually said that the Market Revolution is more revolutionary than the American Revolution. Actually, this is a very classic AP US History question: which was more revolutionary, the American Revolution or the Market Revolution? …
15 APPS RICH PEOPLE USE
Did you know there is an entirely different universe of apps that rich people use? Let’s get you plugged in. Here are 15 apps rich people use. Welcome to alux.com, the place where future billionaires come to get inspired. Number one: Twitter. You might b…
How a bill becomes a law | US government and civics | US government and civics | Khan Academy
In other videos, we have first started talking about the legislative branch of the United States federal government. We talk about how it has two houses: the Senate, which has 100 members (two per state, two times fifty), and the House of Representatives,…
Introduction to electron configurations | AP Chemistry | Khan Academy
In a previous video, we’ve introduced ourselves to the idea of an orbital. Electrons don’t just orbit a nucleus the way that a planet might orbit a star, but really, in order to describe where an electron is at any given point in time, we’re really thinki…
The Largest Wealth Transfer Has Begun | How To NOT Lose Money
What’s up guys? It’s Graham here. So it’s not often that I’ll record an informal video like this without a whole bunch of fancy charts and research and analyst quotes, but something needs to be said about the current state of the market and the direction …