yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits.

So let's first graph ( \frac{2}{x - 1} ). So let me get that one graphed. You can immediately see that something interesting happens at ( x ) is equal to 1. If you were to just substitute ( x ) at 1 into this expression, you're going to get ( \frac{2}{0} ). Whenever you get a non-zero thing over zero, that's a good sign that you might be dealing with a vertical asymptote. In fact, we can draw that vertical asymptote right over here at ( x = 1 ).

But let's think about how that relates to limits. What if we were to explore the limit as ( x ) approaches one of ( f(x) ) is equal to ( \frac{2}{x - 1} )? We can think about it from the left and from the right.

So if we approach one from the left, let me zoom in a little bit over here. So we can see, as we approach from the left when ( x ) is equal to 1, ( f(x) ) would equal to -2. When ( x ) is equal to 0.5, ( f(x) ) is equal to 4, and then it just gets more and more negative the closer we get to one from the left.

I could really—so I'm not even that close yet. If I get to, let's say, 0.91, I'm still 0.09 less than one. I'm at -22.22%. This would be the case when we're dealing with a vertical asymptote like we see over here.

Now, let's compare that to a horizontal asymptote where it turns out that the limit actually can exist. So let me delete these or just erase them for now. Let’s look at this function, which is a pretty neat function. I made it up right before this video started, but it's kind of cool looking.

But let's think about the behavior as ( x ) approaches infinity. So as ( x ) approaches infinity, it looks like our ( y ) value, or the value of the expression if we said ( y ) is equal to that expression, it looks like it's getting closer and closer and closer to 3.

So we could say that we have a horizontal asymptote at ( y = 3 ). We could also—and there's a more rigorous way of defining it—say that our limit as ( x ) approaches infinity of the expression or of the function is equal to 3. Notice my mouse is covering a little bit, but as we get larger and larger, we're getting closer and closer to 3.

In fact, we're getting so close now that, well, here you can see it, we're getting closer and closer and closer to 3. You could also think about what happens as ( x ) approaches negative infinity. Here, you're getting closer and closer and closer to 3 from below.

Now, one thing that's interesting about horizontal asymptotes is you might see that the function actually can cross a horizontal asymptote. It's crossing this horizontal asymptote in this area in between, and even as we approach infinity or negative infinity, you can oscillate around that horizontal asymptote.

Let me set this up. Let me multiply this times ( f(x) ). There you have it! We are now oscillating around the horizontal asymptote, and once again, this limit can exist even though we keep crossing the horizontal asymptote.

We're getting closer and closer and closer to it the larger ( x ) gets. And that's actually a key difference between a horizontal and a vertical asymptote. For vertical asymptotes, if you're dealing with a function, you're not going to cross it. While with a horizontal asymptote, you could, and you are just getting closer and closer and closer to it as ( x ) goes to positive infinity or as ( x ) goes to negative infinity.

More Articles

View All
Adventure Photography: 4 Tips to Get an Epic Shot | Get Out: A Guide to Adventure
Hi, my name is Keith Linski. I’m an adventure photographer and filmmaker. Today, I’m going to talk a little bit about essential things I bring in the field for every shoot. There are so many great apps that make photography so much easier out in the fiel…
BEST of MARGIN CALL #4 - Senior Partners Emergency Meeting
Please, sit down. Welcome, everyone. I must apologize for dragging you all here at such an uncommon hour. But from what I’ve been told, this matter needs to be dealt with urgently. So urgently, in fact, it probably should have been addressed weeks ago. Bu…
How The Stock Market Will Crash
What’s up, Graham! It’s guys here. So, as I’m sure we’re all aware by now, every single week there’s a new prediction that the stock market is going to come crashing down. It’s time to sell everything, and this time it’s for real. But this crash predictio…
Who Is Pope Francis? | Nat Geo Live
[Music] Pope Francis drives a Ford Focus, which is kind of not what you expect, right? How does that work? Well, I haven’t actually seen him drive it. I think he mostly rides, and they actually have a fleet of Ford Focuses. This was actually the only occa…
The Challenges a Repeat Founder Faces - Tikhon Bernstam
Hey guys, today we have Tea Con Burn, a multi-time YC founder. So could you just start by explaining how you first found YC? Yeah, I actually found YC because I was on Reddit. I was in graduate school, which meant I had a lot of free time. And so I was, …
Celebrate 10 years of Khan Academy! 🎂
Hello teachers, Sal here from the not-for-profit Khan Academy, and I just wanted to thank you for all of your partnership over the last 10 years. All of us here at Khan Academy—it’s much more than me now. We’re over 200 folks, including researchers, teac…