yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying force vectors for pendulum: Worked example | AP Physics 1 | Khan Academy


2m read
·Nov 11, 2024

We're told that a ball attached to a string swings in a horizontal circle at constant speed. As shown below, the string makes an angle theta with the horizontal. Which arrows show all the forces on the ball? So pause this video and see if you can figure that out.

Okay, so let's work through this together. This ball is attached to the string, and it's clearly hanging down. I think it's fair to say that we are on some type of a planet. If we're on some type of a planet, you're definitely going to have the force of gravity acting on the ball. So let me draw that vector. The force of gravity, I'll do in orange; let's say it looks something like that. Its magnitude I'll denote as capital F with a sub g right over here.

Now, what's keeping that ball from accelerating downwards? And also, what's keeping that ball in this uniform circular motion? The answer to both of those questions is the tension in the rope. Remember, tension is a pulling force; the rope is pulling on this ball. So we could say the force of the tension; it might look something like this: the force of the tension.

Now, just with that, we have constructed a free-body diagram, and we can immediately answer their question: what are the forces that are acting on the ball? Which arrows show it? So there's one downward, and then there's one going in the direction of the string. If you look at these choices here, you would say it is that one right over there.

Now, some of you might be saying, "Wait, hold on a second! Isn't there some type of a centripetal force that keeps the ball going in a circle? That keeps it from just going straight away, straight off?" And then, "Isn't there some type of force that counteracts the actual force of gravity?" The answer to the question is yes, there is. But those are really just components of the tension.

So if you look at the x component of the tension, I'll do that in a blue color right over here. This x component of the tension, so I'll call that F sub t x, that is our centripetal force, or its magnitude of the x component of tension is the same thing as the magnitude of our centripetal force.

And if we look at the y component of our tension, the y component of our tension, that's what counteracts the force of gravity. So this right over here, its magnitude is F sub t y, and F sub t y, this magnitude is going to be the same thing as the magnitude of the force of gravity. But we already answered our question, and we just got a little bit more intuition of what's going on right over here.

More Articles

View All
The Lost Colony of Roanoke - background and first attempts
Hello Kim. Hey David! So let’s talk about the lost colony at Roanoke. This is something I’ve been learning a lot about lately, and I think it’s really interesting. You know, we often think about this just in terms of the spookiness of there’s this colony…
Finding your footing in uncertain times: Balancing multiple kids with multiple schedules
The broadcast is now starting. All attendees are in listen-only mode. Hi everybody, thanks so much for joining us today. I’m Vicki Lang. I’m our learning scientist here at Khan Academy, and I’m joined by Dan from our marketing team who will be facilitati…
Co-Founder Mistakes That Kill Companies & How To Avoid Them
You definitely want a co-founder. Hey, this is Michael Cyball and Dalton Caldwell, and welcome to Rookie Mistakes. We’ve asked YC founders for their rookie mistakes so we can share them with you and help you avoid these common errors. Let’s start with o…
Why Chasing Happiness is Pointless (The Hedonic Treadmill)
Centuries ago, Siddhartha Gautama was born a prince, with a prophecy declaring that he would become either a great king or a spiritual leader. His father didn’t like the idea of his son walking the spiritual path; he wanted him to become a powerful ruler,…
2015 AP Chemistry free response 2a (part 1 of 2) | Chemistry | Khan Academy
Ethine (C₂H₄) molar mass of 28.1 g per mole may be prepared by the dehydration of ethanol (C₂H₅OH) molar mass 46.1 g per mole using a solid catalyst. A setup for the lab synthesis is shown in the diagram above. The equation for the dehydration reaction is…
RC natural response example (3 of 3)
We just derived what the current is and the voltage. These are both the natural response of the RC. Now, what I did is I went ahead and I plotted out this using a computer, just using Excel to plot out what these two expressions look like. Let me show you…