yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trigonometry review


4m read
·Nov 11, 2024

I want to do a quick overview of trigonometry and the aspects of trig functions that are important to us as electrical engineers. So this isn't meant to be a full class on trigonometry. If you haven't had this subject before, this is something that you can study on KH Academy, and Sal does a lot of good videos on trig functions and how they work.

So the way I remember my trig functions is with the phrase SOA TOA. This is the little phrase I use to remember how to do my trig functions. We draw a triangle like this, a right triangle with an angle here of theta. We label the sides of the triangle as follows: this is the side adjacent to Theta, this is the side opposite of theta, and this side over here is the hypotenuse of the triangle.

So this says that the definition of sine of theta equals opposite over hypotenuse. Opposite over hypotenuse. This phrase here means that cosine of theta equals adjacent over hypotenuse. And the last one here is for the tangent; it says that the tangent of theta equals opposite over adjacent, opposite divided by adjacent, opposite over adjacent.

So SOA TOA helps you remember your trig functions. Let's take that idea over here and draw a line out and make some calculations. We have a graph here of our unit circle. That means the radius of this is one everywhere. What I want to know is, here's my angle Theta, and angles are measured from the positive x-axis.

Here's the x-axis and here's the y-axis. Angles are measured going counterclockwise. So let's talk for a second about how angles are measured. Angles are measured in two ways: angles are measured in degrees from 0 to 360, and angles are also measured in something called radians, and that goes from 0 to 2 pi.

These are two different angle measures, and when you're measuring in degrees, we put the little degree mark up here; that's what that means. Radians don't get a degree mark on them. So if I mark this out in degrees, here's 0°, here's 90°, here's 180°, this is 270°, and when I get back to the beginning, it's 360°.

If I measure the same angles in radians, this will be zero radians. Well, when I get back here, it's going to be 2 pi radians. Going all the way around the circle is 2 pi radians. That means going halfway around the circle is pi radians; that's equivalent to 180°. If I do a quarter of a circle, that's equal to pi/2 radians, and if I do 3/4 of a circle, that's 3 pi/2 radians.

So we'll use degrees and radians all the time, and we'll flip back and forth between them. Now let's do some trig functions on our angle Theta right in here. Let's work out the sine, cosine, and tangent.

Now, let me give a name to this hypotenuse; let's call that R, and R equals one. Right, I said this was a unit circle, so R is equal to one. When we calculate our right triangle, what we do is drop a perpendicular down here to the x-axis, and we also draw a horizontal over here from the y-axis.

This side right here, this section of the x-axis, is the side adjacent to the angle Theta. This side, this distance right here on this side of our triangle, is the side opposite. Okay, and basically there's going to be a y-intercept here and a little x-intercept right here where those happen. These will be some number depending on the tilt of this angle of this line here.

So the sine of theta is equal to what? Let's look at our definition: it's equal to opposite over hypotenuse. Opposite is y over the hypotenuse, which is R. If I look at cosine theta, adjacent over hypotenuse. Adjacent is the x distance, and the hypotenuse is R.

If we do the tangent of theta, that equals what? It's opposite over adjacent, so it's opposite, which is the y distance, over x, the adjacent x is the adjacent x. Now, one thing to notice here about tangent y over x is the rise divided by the run going from this point up to this point.

So that is the slope. The idea of slope and the idea of tangent are really closely related. Just as one small point, let's work out what is one radian, what's an angle of one radian in degrees? I can do that conversion just by doing some units.

If we have 180 degrees, that equals pi radians, so that means that one radian equals 180 over pi. If you plug that in the calculator, it'll come out to roughly 57.3 degrees. So one radian actually is a little above 45 degrees. One radian is 57°, and it looks about like that.

We don't use this very often; mostly we talk about radians in terms of multiples of pi because it makes more sense on this circle. But just to let you know, that's roughly one radian.

More Articles

View All
The Next Atomic Bomb Is Made of DNA #kurzgesagt #shorts
The next atomic bomb is made of DNA, and it’s as affordable as a new car. In recent years, genetic data has become more available, knowledge more widespread, and lab resources less expensive. Bioengineering had previously been restricted to well-funded la…
The Modern Struggle Is Fighting Weaponized Addiction
In some very deep level, all pleasure creates its own offsetting pain and fear of loss on the other side. I had a tweet recently where I said, in an age of abundance, pursuing pleasure for its own sake creates addiction. A Miyamoto Musashi line: do not pu…
The Cost of Living Crisis Isn't What You Think
Is the cost of living crisis actually real? Hear me out on this. According to the Survey of Household Economics and Decision-Making, and as reported by the Financial Times, when people are asked about the health of the US economy year by year, more people…
The Birth of Hip-Hop | Generation X
My name’s DJ Cool. The music spun by Herc is different from the stuff most DJ’s are playing. He would take two records and spin back and forth from the same spot to just prolong the breakbeat. Herc’s style catches on, and not just with b-boys but with emc…
Variance and standard deviation of a discrete random variable | AP Statistics | Khan Academy
In a previous video, we defined this random variable (X). It’s a discrete random variable; it can only take on a finite number of values. I defined it as the number of workouts I might do in a week. We calculated the expected value of our random variable …
Hypotheses for a two-sample t test | AP Statistics | Khan Academy
[Music] Market researchers conducted a study comparing the salaries of managers at a large nationwide retail store. The researchers obtained salary and demographic data for a random sample of managers. The researchers calculated the average salary of the…