yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
What Is a Sin Eater? | The Story of God
[music playing] NARRATOR: This rugged border land between England and Wales was the scene of many battles over the centuries, and it’s a place with a rich tradition of ghost stories. Sal Masekela and historian Davit Mills Daniels are on the trail of Engl…
Shaping American national identity from 1890 to 1945 | AP US History | Khan Academy
[Instructor] In 1890, the United States was not exactly a major player on the world stage. It was an industrial behemoth, attracting immigrants from all over the world, but it was focused on its own internal growth, not foreign affairs. There was little i…
BEST IMAGES OF THE WEEK: IMG! episode 5
The cheapest way to make your own swimming pool and a bus who thinks he’s the Kool-Aid man. It’s episode five of IMG. We begin the day with hoodies that zip up to make you look like Captain America, a ninja, Batman, or Boba Fett. Last week, BuzzFeed gave…
Dr. Anthony Fauci on a Covid-19 vaccine & reopening schools this fall | Homeroom with Sal
Hi everyone, welcome to today’s homeroom. We have a very exciting special conversation with Dr. Fauci coming in a few seconds. But I will make my standard announcement reminding everyone that Khan Academy is a not-for-profit organization. We can only exis…
Marginal utllity free response example | APⓇ Microeconomics | Khan Academy
We are told that Teresa consumes both bagels and toy cars, and they tell us that the table above shows Teresa’s marginal utility from bagels and toy cars. The first question is, what is her total utility from purchasing three toy cars? So pause this video…
The Brightest Part of a Shadow is in the Middle
Where is the darkest part of a shadow? I mean, the obvious answer seems to be right in the middle. If you look closely at a shadow, as you move the object away from the wall, you notice that the shadow gets a bit fuzzy. So clearly, the edges are lighter. …