yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
Wave transmission | Waves | Middle school physics | Khan Academy
When we’re talking about waves, transmission is when a wave passes from a material into another one. For example, here we have the sun, 93 million miles away on average, and imagine the different materials that the light has to travel through from the sun…
How I Achieved High Income In My 20s | How to Make More Money
[Music] So in this video, I wanted to share some things that I’ve learned about money over the past eight years or so. I’m not saying that I’m some genius who’s got money all figured out or anything, but over the past eight years I’ve made some decisions …
Comparing exponential and linear function
Company A is offering ten thousand dollars for the first month and will increase the amount each month by five thousand dollars. Company B is offering five hundred dollars for the first month and will double their payment each month. For which monthly pay…
Life’s Greatest Paradox: What You Resist, Persists
Swiss psychiatrist Carl Jung developed a concept named ‘The Shadow,’ which he saw as a part of the unconscious that contains one’s repressed characteristics that generally do not fit the ego ideal. These attributes we unconsciously hide in the dark, and b…
How to subtract mixed numbers that have unlike denominators | Fractions | Pre-Algebra | Khan Academy
Let’s try to evaluate 7 and 6 9ths - 3 and 25ths. So, like always, I like to separate out the whole number parts from the fractional parts. This is the same thing as 7 + 6⁄9 - 3 - 25⁄100. The reason why I’m saying -3 and -25⁄100 is this is the same thing…
Don’t Be “Distracted by Their Darkness” | Marcus Aurelius on Success
Even though the Stoic teachings are geared towards tranquility, the end goal is living virtuously and in accordance with nature. So, there’s something as being ‘successful’ as a Stoic, which is living a life of virtue. But no matter what we pursue, the wo…