yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
2008 Berkshire Hathaway Annual Meeting (Full Version)
[Music] Folks, this just in! It appears that Warren Buffett has struck a deal to trade jobs with daytime soap opera diva Susan Lucci. Buffett has reportedly negotiated a permanent spot on the cast of All My Children. Apparently, Ms. Lucci is en route to O…
Last Season on MARS | MARS
Getting to Mars will be risky, dangerous, but it will be the greatest adventure ever in human history. Funny thing about Mars, it feels like Earth, but it is more hostile to life at any place on Earth. Ignition in the absence of gravity, lots of things ca…
How to Operate with Keith Rabois (How to Start a Startup 2014: Lecture 14)
Um, so I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product at least some people love, that you prob…
Why Do We Dream?
Why do we dream? This is one of life’s great unanswered questions. Given that we spend around six years of our lives in a dream state, it’s no wonder people want to understand why we do it. Sure, there are theories, and I’ll get to them, but there’s no cl…
What Science Tells Us About Living Longer | Podcast | Overheard at National Geographic
Foreign s have always been interested in finding ways to live longer. The oldest surviving story in recorded history is Mesopotamia’s 4,000-year-old Epic of Gilgamesh, and this desire shows up even there. After the death of a close friend, our hero Gilgam…
Effects of transatlantic voyages, 1492-1607 | Khan Academy | AP US History
When Christopher Columbus first arrived in the Americas, he had no way of knowing that he had set off a complex chain of events that would lead to everything from humanity’s largest demographic disaster to the founding of a new nation nearly 300 years lat…