yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
Food Sustainability Around The World | Gordon Ramsay: Uncharted | National Geographic
Take what you need; respect the land. Treat it, bless it; it will look after you. [Music] Twins Emily and Amanda Gail are accomplished local boat captains. These ladies have an endless knowledge of Florida fishing, and they’re going to lead me to the mo…
How Do You Convince Someone to Join Your Startup? - Dalton Caldwell
This is a super common question where someone wants to start a startup and they’re like, “Well, how do I get a co-founder, or how do I get my first employees?” My advice is the following: first, you have to convince yourself. If you’re not fully committed…
Example translating points
What we’re going to do in this video is look at all of the ways of describing how to translate a point and then to actually translate that point on our coordinate plane. So, for example, they say plot the image of point P under a translation by five unit…
The 5 Golden Rules of Real Estate Investing
What’s up, you guys? It’s Graham here. So I’ll just get right into it. These are the five real estate investing tips to live by and keep in mind. And this is coming from somebody who owns five investment properties already and someone who’s been in real e…
The Fight to Stop Illegal Bear Trafficking in Southeast Asia | National Geographic
What I’ve seen in LA is spare cages, no bigger than, uh, 2 m by 2 m by 2 m. These animals would likely be placed in those cages as cubs and spend the duration of their lives there. We’ve seen a worrying trend with the increase in captive population of wil…
2015 AP Chemistry free response 3a | Chemistry | Khan Academy
Potassium sorbate, and they give us its formula right over here, has a molar mass of 150 grams per mole. They put this decimal here to show us that these are actually three significant figures; even the zero is a significant digit. Here is commonly added …