yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
The mole and Avogadro's number | Moles and molar mass | High school chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of average atomic mass, which we began to realize could be a very useful way of thinking about a mass at an atomic level or at a molecular level. But what we’re going to do in this video is connect …
What Shark Is Attacking Tourists? | SharkFest
[dramatic music] NARRATOR: So what is behind this deadly spate of attacks? According to local news reporter Jerry Sinon, it’s a question on everyone’s mind. There was a lot of rumors in regards to the attacks. Why did it happen? And in two weeks’ time, i…
The Ninth Amendment | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy. Today we’re learning more about the Ninth Amendment to the U.S. Constitution, which reads: “The enumeration in the Constitution of certain rights shall not be construed to deny or disparage others retained by the people…
15 Unspoken Life Lessons You Need to Know
Hello, hello and welcome back to Honest Talks, my friend. This is a series where we talk about things that we personally find interesting and we think that you might too. In life, there are lessons that can’t be taught in a classroom or found in books. T…
Your Top Questions on Economics & Investments Answered: Part 2
I was asked about money and saving and investing, and what the most important things are. Start with the basics: what do you need, for how long, and what do you have in relationship to that? That’s most fundamental. Then, you can get into the more esoter…
Sam Altman : How to Build the Future
I’m Jack, Sam’s brother, and we are here in our backyard, where we also live with our other brother. Sam wanted to give some advice about how to have an impact on the world, and since you couldn’t interview him himself, here I am. So, Sam, thank you. Th…