yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
7 Best Questions from the 2024 Berkshire Hathaway Annual Meeting (Must Watch)
I don’t regard Utah as, uh, being unfriendly to the idea of utilities being treated fairly. Charlie? [Laughter] [Applause] I had actually checked myself a couple of times already, but I’ll slip again. Each year, tens of thousands of Warren Buffett discip…
Scaling Growth | Gustaf Alstromer, YC Partner (formerly Airbnb) & Ed Baker (formerly Uber)
What’s pretty cool is a few guys who have been living the centre of building up these growth teams kind of for the past, you know, seven or eight years. Edie joined Uber to start the growth team when it was five people, and then over the three and half ye…
Artificial selection and domestication | Natural selection | AP Biology | Khan Academy
Most of us are familiar with dogs, oftentimes known as man’s best friend. What’s fascinating about them is that they are one species, even though different types of dogs, different breeds, could look very, very different. The fact that they’re one species…
How Do You Get a Haircut in Antarctica?: Day in the Life of a Scientist | Continent 7: Antarctica
[Music] So this is my Scott based haircut. This is a new one for me. I can say I’ve got my haircut in Antarctica by a butcher. By butcher, that’s a carpenter, and he’s only got one eye, and he’s half L, and he’s only got one eye. He says, “Half fine, here…
Being Unhappy Is Very Inefficient
Besides, I’m too smart for it. The other objection is I don’t want it to lower my productivity. I don’t want to have less desire or less work ethic. Fact-check, and that is true. The more happy you are, the more content and peaceful you are. That’s less l…
Last Wild Places: Iberá | National Geographic
(Inspirational music) (Thunder rolls) [Sebastián] Iberá was a place that was degraded by humans. And it’s a place that is being recovered by humans. It’s an incredible example of what we can achieve if we have the decision of restoring an ecosystem on a …