yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 times taller, what is its radius? Pause this video and see if you can figure this out on your own.

All right, now let's do this together. So first, I always like to approach things intuitively. So let's say the first cylinder looks something like this, like this, and then the second cylinder here, it's a hundred times taller. I would have trouble drawing something that's 100 times taller, but if it has the same volume, it's going to have to be a lot thinner.

So, as you make the cylinder taller, and I'm not going anywhere close to 100 times as tall here, you're going to have to decrease the radius. So we would expect the radius to be a good bit less than 20 meters. So that's just the first intuition, just to make sure that we somehow don't get some number that's larger than 20 meters.

But how do we figure out what that could be? Well, now we can go back to the formula, and we know that Jill calculated that 20 meters is the radius. So 20 is equal to the square root of ( \frac{v}{\pi h} ). If this formula looks unfamiliar to you, just remember the volume of a cylinder is the area of one of the either the top or the bottom, so ( \pi r^2 \times h ), and if you were to just solve this for ( r ), you would have this exact formula that Jill uses.

So this isn't coming, this isn't some new formula; this is probably something that you have seen already. So we know that 20 meters is equal to this, and now we're talking about a situation where we're at a height that is 100 times taller. So this other cylinder is going to have a radius of ( \sqrt{v} ) that is the same. So let's just write that ( v ) there.

( \pi ) doesn't change; it's always going to be ( \pi ). And now instead of ( h ), we have something that is a hundred times taller, so we could write that as ( 100h ). Then what's another way to write this? Well, what I'm going to do is try to bring out the hundreds. So I still get the square root of ( \frac{v}{\pi h} ), so I could rewrite this as the square root of ( \frac{1}{100} \times \frac{v}{\pi h} ), which I could write as ( \sqrt{\frac{1}{100}} \times \sqrt{\frac{v}{\pi h}} ).

Now we know what the square root of ( \frac{v}{\pi h} ) is; we know that that is 20, and our units are meters. So this is 20, and then what's the square root of ( \frac{1}{100} )? Well, this is the same thing as ( \frac{1}{\sqrt{100}} ), and of course now it's going to be times 20. Well, the square root of 100, I should say the principal root of 100, is 10.

So the radius of our new cylinder, of the second cylinder, is going to be ( \frac{1}{10} \times 20 ), which is equal to 2 meters.

And we're done! The second cylinder is going to have a radius of 2 meters, which meets our intuition. If we increase our height by a factor of 100, then our radius decreases by a factor of 10. The reason why is because you square the radius right over here. So if height increases by a factor of 100, if radius just decreases by a factor of 10, it'll make this whole expression still have the same volume.

More Articles

View All
Worked example: identifying separable equations | AP Calculus AB | Khan Academy
Which of the differential equations are separable? I encourage you to pause this video and see which of these are actually separable. Now, the way that I approach this is I try to solve for the derivative. If when I solve for the derivative, I get ( \fra…
Proof of the derivative of cos(x) | Derivative rules | AP Calculus AB | Khan Academy
What I’m going to do in this video is make a visual argument as to why the derivative with respect to X of cosine of x is equal to sin of X. We’re going to base this argument on a previous proof we made that the derivative with respect to X of sin of X is…
Adora Cheung
Hello, um, my name is Justin Khan. I’m one of the partners at YC, and I’m extremely excited to introduce our next speaker, Adora Chung. Uh, Adora is the founder and CEO of Homejoy and one of our top companies that we’ve funded. Um, I’m particularly excit…
Copán Ruinas Was a Thriving City - Until One Day, It Went Away | National Geographic
[Music] Copan Ruinas is one of the most mysterious and spectacular cities of the Maya civilization. At its height, between 250 to 900 AD, approximately 27,000 mile IFFT. Here, thereafter, the civilization mysteriously crumbled, and the Copan Ruinas were l…
The Mother Of All Bubbles Is Here
What’s up? Grandma’s guys here! So lately, there’s been this ominous looking chart. It’s beginning to scare a lot of investors, and today we have to talk about it. On the left, we see the Japanese stock market, which peaked in 1992, crashed 80 percent ov…
15 Subtle Signs You Outsmart Everyone Else
If you think IQ means you’re smart, you’re wrong. Neither does academic achievement or being the teacher’s pet. Real-life smart is different from book smart. Some people run circles around others; they play life like a game of chess or poker, depending on…