yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
COLD HARD SCIENCE.The Physics of Skating on Ice (With SlowMo) - Smarter Every Day 110
Hey, it’s me Destin. Welcome back to Smarter Every Day. So in the Olympics, the most athletic team always wins, right? No. It’s actually more complicated than that because there are physical objects in the Olympics. Now the team that is able to manipulate…
Episode 1 Recap | MARS
Previously on Mars, we knew Mars wouldn’t welcome us with open arms. Warning system offline. Permission was switched from primary to backup. “Do it. Prepare for V’s propulsion.” We were ready to give everything to get there. Mission Control, us in datal…
Mars Gets Ready for Its Close-up | Podcast | Overheard at National Geographic
I’m getting to go on a guided tour of Mars. This is so freaking cool! You can see this spectacular panoramic landscape. This could be Canyonlands; this could be Death Valley. What’s the weather like in this section of Mars? Yeah, the forecast for tomorro…
How much money I made from 1M views- How to make money on Youtube
You probably saw YouTubers buying luxury cars, designer clothing, and expensive houses. And I’m pretty sure that you have at least for once wondered how much do these YouTubers make. So in this video, I’m gonna show you exact data of how much money I made…
Ever wondered why Mansions have SO MANY Bathrooms? Here’s why...
What’s up you guys? It’s Graham here. So, have you ever wondered why mansions have so many bathrooms in them? Because I recently posted a mansion tour of a 30,000 square-foot home in Las Vegas, Nevada, and on that video, I kept getting the same recurring…
The Cult of Conformity in Silicon Valley
Who would want to be an early employee at imeem and Justin TV? Non-conformists, like, they would never be. You know a conformist would not be caught dead working at an early stage. This is Michael Seibel with Dalton Caldwell. Today, we’re talking about co…