yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
$1000 Per Month For EVERYONE | New Stimulus Explained
What’s up guys, it’s Graham here. So lately, there’s definitely been a lot of talking discussion about the upcoming stimulus packages. After all, it’s the closest that we can get to receiving free money. Almost 20% of the United States is now out of work,…
Equations with rational expressions | Mathematics III | High School Math | Khan Academy
So we have a nice little equation here dealing with rational expressions, and I encourage you to pause the video and see if you can figure out what values of x satisfy this equation. All right, let’s work through this together. The first thing I’d like t…
No Respect | Wicked Tuna: Outer Banks
Okay, that looks like a mark. Jig on it, jig on it. The best thing that can happen is you can put a fish on the deck; that just makes all the stress go away. God, man, we’re going too fast! We’re going to break off! Slow down, man! I’m only going five. …
How Electricity Actually Works
I made a video about a gigantic circuit with light-second long wires that connect up to a light bulb, which is just one meter away from the battery and switch, and I asked you, after I closed the switch, how long will it take for us to get light from that…
2015 AP Chemistry free response 1e | Chemistry | Khan Academy
The only common oxide of zinc has a formula ZnO, zinc, and then you have your oxygen. Write the electron configuration for a zinc atom in the ground state. So, there’s a couple of ways that you could do this for the electron configuration. Let’s first id…
The Internal Political Conflict
Um, what are you paying attention to? What is concerning to you as it relates to the conflict internally? Um, now, and very classically, um, there’s the emergence of populism on both sides. Populism on the right, populism on the left. Populism means, um,…