yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
The Sinking of the SS Robert J Walker | WW2 Hell Under the Sea
Christmas morning 1944, 218 days after leaving Germany, 160 miles southeast of Sydney, Australia. Corvette and Capitaine Heinrich Tim of the German U-boat U-862 has two torpedoes into an Allied freighter and has just fired another to finish it off. U-862’…
30 Years After Chernobyl, Nature Is Thriving | National Geographic
The large reason why these animals seem to be persisting in high densities or a high abundance within the exclusion zone is because of the absence of humans. It’s absolutely normal. As you drive around the exclusion zone, you’re overcome by all the lush n…
Food, Sex and Partying as a Philosophy | Hedonism Explored
Once upon a time, the ancient Greek king Odysseus and his crew arrived on an island inhabited by the Lotus Eaters. These people seemed to live in a state of perpetual pleasure and joy, spending their days eating the sweet fruit of the lotus plant. Curious…
China Is About To Cause A Global Recession
Two of the world’s biggest economies, the United States and China, are struggling. Business activity in Shanghai was brought to a standstill for weeks. Disastrous. I think there is no other word for it. What’s up guys? It’s Graham here. Throughout the la…
How We Can Keep Plastics Out of Our Ocean | National Geographic
8 million metric tons of plastic trash enters the sea from land every year; the equivalent of five plastic bags filled with trash for every foot of coastline in the world. Across our ocean, plastic trash blows into circulation, dispersed almost everywhere…
Local linearity and differentiability | Derivatives introduction | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore the relationship between local linearity at a point and differentiability at a point. So, local linearity is this idea that if we zoom in sufficiently on a point, even a non-linear function that is differen…