yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy
Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution. So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero…
YouTube Shorts is Changing YouTube - Smarter Every Day 266
Hey, it’s me, Dustin. Welcome back to Smarter Every Day! I am in the thinkI place, and today on this video, I would like to take you to the thinkI place with me. The other day, my friend’s dad said something that was like a throwaway dad comment at first.…
Everest Weather - Data is in the Clouds | National Geographic
Everest is one of the most extreme environments on the planet, and nobody has ever fully quantified the climate conditions up there. We’re going to be pushing the envelope, attempting to install the highest weather station in the world to improve our unde…
MTV News Rocks the Vote | Generation X
You have the right to vote music or lose it. Rock the Vote comes along at the same time MTV’s fledgling news department is finding its legs. Hi, I’m Kevin de Sauron and this is MTV News. The second of three presidential debates was held Thursday night; i…
Is Lucid Dreaming Like Being in Virtual Reality? #Shorts
The biggest thing that those of us who haven’t had the pleasure of lucid dreaming are wondering is, what’s it like? Lucid dreamers have described feeling like they’re playing a virtual reality game, where they have some control over aspects of their scene…
“Someone despises me. That’s their problem.” | How to Build Stoic Fortitude
There’s a big difference between having fortitude and hiding away in a fortress. In the latter case, we physically separate ourselves through self-isolation. Oftentimes, this is an attempt to hide from the big, bad things in the world. It’s not unlikely t…