yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Interpreting y-intercept in regression model | AP Statistics | Khan Academy
Adriana gathered data on different schools’ winning percentages and the average yearly salary of their head coaches in millions of dollars in the years 2000 to 2011. She then created the following scatter plot and trend line. So this is salary in million…
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
RECESSION WARNING: My YouTube Income Is Crashing
What’s up, Graham? It’s guys here. So, things are getting serious, and we have a lot of indicators that would point to a potential recession. For example, it’s shown that a lack of conferences tends to coincide with a slowing economy. Exotic dancers say t…
The World isn't Nearly as Terrible as We Think (or is it?)
As soon as we turn on the radio or television, or scroll through our social media feeds, a rush of tragic events scourges our minds. From pandemics to street violence, from clashes between countries to changes in climate: if we immerse ourselves in these …
The Life of a Baby Polar Bear - Ep. 4 | Wildlife: The Big Freeze
[Narrator] Before becoming the biggest land predator on the planet, polar bears are born small and helpless. They must then embark on an odyssey to grow more than 100 times their weight. And learn everything they need to survive before their mother abando…
Estimating multi-digit multiplication word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told results from a survey showed that 2,138 people took photos with the camera when on vacation. About 15 times as many people took photos with their phone. About how many people took photos with their phone? So pause this video and take a shot at …