yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Bullet vs Prince Rupert's Drop at 150,000 fps - Smarter Every Day 165
All right, Keith. Prince Rupert’s drop. Prince Rupert’s drop, right? Paper submitted from 1660 to the Royal Society. So this is a very early stuff. Hey, it’s me, D. Welcome back to Smarter Every Day. I am in the basement of the Royal Society in London, En…
Polar curve area with calculator
What we’re going to try to do is use our powers of calculus to find this blue area right over here. What this blue area is, is the area in between successive loops of the graph. The polar graph ( r(\theta) = 3\theta \sin(\theta) ) I’m graphing it in polar…
Who are the Water Mafia | Parched
[busy street sounds] [rhythmic music playing] AMAN SETHI: Everyone buys water from the water mafia– the rich, the poor, the middle class. That’s because Delhi and its surroundings have about 24 million people. And anywhere between 30% to 40% don’t have a…
Everything about Sea Turtles - Smarter Every Day 239
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I’m a mechanical and aerospace engineer. So when it comes to things like shock waves, or laminar flow, or snatch blocks, or aircraft, and things like that, I’m very comfortable learning things, beca…
How have congressional elections changed over time? | US government and civics | Khan Academy
How have congressional elections changed over time? Congressional elections used to be separate from the presidential elections. One of the great examples is in 1938. FDR, who we all look back and think of as a president who had such extraordinary power a…
The Nostalgia Effect
You look out the window into the empty streets. No sounds of kids running around, no noise of busy streets littered with both cars and pedestrians. The city is silent, the pigeons don’t even group up anymore because there’s no one to feed them. Your alarm…