yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Solving quadratics by factoring: leading coefficient â   1 | High School Math | Khan Academy
So we have (6x^2 - 120x + 600 = 0). Like always, pause this video and see if you can solve for (x). If you can find the (X) values that satisfy this equation. All right, let’s work through this together. So the numbers here don’t seem like outlandish num…
2017 AP Calculus AB/BC 4c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let’s now tackle part C, which tells us that for T is less than 10, an alternate model for the internal temperature of the potato at time T minutes is the function G that satisfies the differential equation: The derivative of G with respect to T is equal…
Harry Zhang with Kevin Hale on Building Lob to Automate the Offline World
Today we have Harry Zhang, co-founder of Lob. Lob makes APIs for companies to send letters and postcards. So, Kevin has a question for you. “I’m trying to think back to when you guys applied to YC. You didn’t have almost anything. Like, I would say it wa…
Did Apple Just Have Its Moat Blocked? (Epic Games Lawsuit)
So here on the channel, I love talking long-term Warren Buffett-style value investing, and that strategy largely boils down to four key points. There’s understanding the business, so you know what you’re getting yourself into. Then you find a competitive …
Progressive Aspect | The parts of speech | Grammar | Khan Academy
Hello, grammarians! Let’s talk about the progressive aspect. So, we talked about the simple aspect as something that is just the most bare form. It’s what you see here: I walk, I will walk, I walked. But aspect allows us to talk about things that are on…
You’re reading wrong! 5 tips to become a better reader 📚
One of the common mistakes about reading is that aiming too much or focusing on numbers too much. I know reading tons and tons of books might feel amazing about yourself and even maybe feed your ego a little bit. But in those scenarios, you need to rememb…