yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
8 Most Important Lessons from the 2022 Berkshire Hathaway Annual Meeting
Every year, 40,000 people travel to Omaha, Nebraska to listen to investing legends Warren Buffett and Charlie Munger speak. They share their thoughts on practically everything, from what they see going on in the stock market and in the economy, all the wa…
15 Best Books On Selling
You are watching the book club. Every Wednesday, we handpick the best books to improve your life. 15 of the best books on selling. Welcome to A Lux, the place where future billionaires come to get inspired. If you’re not subscribed yet, you’re missing out…
a chill day in my life
Good morning guys, it’s currently 11:20 a.m. - answering YouTube comments - okay so now it’s 12 and I think it’s enough scrolling so I’m just gonna delete all of the social media apps because it takes a lot of time. Let’s do my skincare - skincare time -…
Calculating neutral velocity | Special relativity | Physics | Khan Academy
All right, we can now do the math to solve for v. So let me just simplify the right-hand side of this equation. v minus negative e? Well, that’s just going to be two v. One minus negative of v squared over c squared? Well, that’s just one plus positive v…
Rewilding Gorongosa: Lions | National Geographic
Everyone comes to a national park in Africa and they want to see lions. They are among the most incredible species I’ve ever worked with. [Music] My name is Paula Boule. I’m a National Geographic explorer and associate director of lion conservation for Go…
Determining whether values are in domain of function
We’re asked to determine for each x value whether it is in the domain of f or not, and they have our definition of f of x up here. So pause this video and see if you can work through this before we do it together. All right, so just as a bit of a review,…