yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
What can I do to protect my devices?
Mark, I’m pretty convinced that I need to protect my devices from other folks. How should I think about that? How does one protect their device? Yeah. The first piece is really taking what the manufacturers and the companies behind them are giving you. S…
2015 AP Biology free response 6
In an attempt to rescue a small, isolated population of snakes from decline, a few male snakes from several larger populations of the same species were introduced into the population. In 1992, the snakes reproduce sexually, and there are abundant resource…
Will Europe Freeze over When the Gulf Stream Stops? #kurzgesagt #shorts
Will Europe freeze when the Gulf Stream collapses? The answer might surprise you. First of all, the Gulf Stream won’t collapse. It’s a solely wind-driven ocean current that originates in the Gulf of Mexico and transports warm surface water eastward. The …
Grand Canyon Adventure: The 750-Mile Hike That Nearly Killed Us (Part 1) | Nat Geo Live
What we’re gonna do tonight, Kevin and I are gonna take you on an unusual and somewhat remarkable journey through a remarkable place, the Grand Canyon. But before we do that, we felt it’s important to get a little bit of an idea of how we know each other,…
Worked example: Finding the formula of an ionic compound | AP Chemistry | Khan Academy
Let’s now see if we could come up with the chemical formula for the ionic compound calcium bromide. And like always, if you are inspired, pause the video and see if you could come up with it on your own. All right, so the convention is that we write the …
Adventurers Jim & Tori Baird on their son’s FOXG1 diagnosis, life in the wild | National Geographic
Wesley, as challenging as some of our days might be with him, I wouldn’t want to change him for the world because he is just the happiest little thing. My name is Jim Baird and I am Tori Baird. We have two boys, Wesley and Hudson. Wesley is just a little…