yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
What it’s like to be half Japanese half Turkish 🇯🇵/ 🇹🇷
What’s up! It’s me, Ruri. I’m a first-year medical student here in Turkey, and today we’re talking about what it’s like to be growing up half Japanese and half Turkish. I will timestamp every single thing that I mention in the description below so that yo…
Mapping the Mysterious Islands Near San Francisco | Best Job Ever
Ross and I went out to the ferons to capture conservation stories and map The Refuge. The Falon National Wildlife Refuge is the largest seabird nesting colony in the lower 48 states, and it’s also an incredibly important breeding ground for marine mammals…
What Would You Do If Money Didn’t Matter? | Short Film Showcase
What do you desire? What makes you itch? What sort of a situation would you like? Let’s suppose I do this often in vocational guidance of students. They come to me and say, “Well, we’re getting out of college and
Mr. Freeman, part 40
Look closer, but don’t blink your eyes because you will lose your favorite 25th frame. There is it! Again I appear through the invisible door in the dim light of your consciousness. Let me invite you to the dance. Waltz, please. We are dividing and rolli…
Science Is an Error-Correcting Mechanism
So getting back to good explanations, where do these explanations come from? There’s currently an obsession with induction. Induction being the idea that you can predict the future from the past. You can say, “I saw one, then two, then three, then four, …
Evidence of evolution: embryology | Evolution | Middle school biology | Khan Academy
Do you ever wish that you had a tail? You could swing your way to school, bake pies more efficiently, and carry an umbrella while keeping your hands free. The funny thing is, you did have a tail once, before you were born. Back then, you were an embryo.…