yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
This U.S. Fencer Is Named After a Warrior Queen—and It Shows | Short Film Showcase
I don’t like to fight people, but you can’t get by without fighting. My mom named me after Queen Ninga from Angola; she was a warrior queen. I met Peter Westbrook when I was nine. Peter Westbrook is a legend in US fencing. He fenced at a time when black f…
Comparing animal and plant cells | Cells and organisms | Middle school biology | Khan Academy
So, let’s play a game of spot the difference. Now, if you were asked to spot the difference between these two pictures, you’d probably laugh and say that’s too easy because it’s obvious that this picture of a lion on the left is nowhere close to looking …
2015 AP Chemistry free response 2a (part 2/2) and b | Chemistry | Khan Academy
All right, now let’s tackle, in the last video we did the first part of Part A. Now let’s do the second part of Part A. So the second part of Part A, they say calculate the number of moles of ethine that would be produced if the dehydration reaction went…
Affordable Watches That Look Expensive
You know I’m constantly asked, “I don’t want to spend $150,000 on a watch, $200,000, $250,000, $500,000.” And yeah, there are a lot of watches in that price range, but that’s not how you start collecting. You’ve got to find a brand that makes dials at an …
Ray Dalio on THE DEBT CYCLES
In these cycles, there are short-term cycles that build up to create a long-term cycle. So, uh, for example, we’re used to, uh, what’s commonly called the business cycle or the short-term debt cycle, in which there’s a recession when economic weakness and…
How More Efficient Fishing Can Protect the Ocean | National Geographic
[Music] All the management strategies that we have today were really developed thousands of years ago by the Pacific Islanders. Things like closed areas, closed seasons for spawning, minimum size [Music] limits. Somebody would say, like, “Oh, he’s a fishe…