yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Why This Museum Stores Thousands of Dead Animals in Its Freezer | National Geographic
Humans have altered the environment more so than any other species that has lived on the planet. We see animals in our environment that are having to adapt to the world that we have essentially fabricated for them, and that includes them dying as a result…
Living In Accordance With Nature | A Stoic's Ultimate Goal
[Music] The ancient Stoics argued that living a virtuous life means living in accordance with nature. Now, what did they exactly mean by this? Are we to follow our instincts like animals do, or perhaps should we live a nature-friendly lifestyle? In this …
Fundraising Panel at Female Founders Conference 2016
All right, I’m excited to have all four of you here. So I’d love for you to each introduce yourselves. If you could introduce yourself and your company and what it does, what batch you went through YC, and you know how much money you’ve raised or the stag…
The Sixth Amendment | National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy. Today I’m learning about the Sixth Amendment to the U.S. Constitution, one of four amendments in the Bill of Rights that concerns the rights of the accused. The Sixth Amendment guarantees defendants in criminal cases the…
Foraging in the Rainforest | Restaurants at the End of the World | National Geographic
So I’m curious to see what unique ingredients Giorgi will be able to bring to the table, literally. Ow. [Speaking Portuguese] One of the most special species in the rainforest. The name is capicoba. That’s pretty, huh? For you—that looks like that looks v…
Building an Engineering Team by Ammon Bartram and Harj Taggar
As a slides of loading, there is no topic that should occupy your minds more as you build your company than bringing on the team that’s going to make your company successful as you move forward. Hajin Amin from Triple Byte, YC alumnus, is going to talk ab…