yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Mendelian inheritance and Punnett squares | High school biology | Khan Academy
[Narrator] This is a photo of Gregor Mendel, who is often known as the father of genetics. And we’ll see in a few seconds why, and he was an Abbot of a monastery in Moravia, which is in modern day Czech Republic. And many people had bred plants for agr…
How to Build An MVP | Startup School
[Music] All right, uh today I’d like to talk to you about how to build an MVP or a minimum viable product. So if you haven’t seen this before, this is a meme that we love to talk about when trying to help founders with their MVP. It’s called the midwit me…
You Can Do More Than You Think | The Growth Mindset
Probably most people know the story about the turtle and the rabbit, in which the rabbit laughed at the turtle because of his slowness. But to his surprise, the turtle challenged the rabbit to a race. Initially, the rabbit thought the turtle was joking, b…
Graphing shifted functions | Mathematics III | High School Math | Khan Academy
We’re told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy. We c…
I Just Lost $1.5 Million In Stocks
What’s up guys, it’s Graham here. So let’s be real, everyone always talks about their wins or how they knew and predicted that some obscure event was going to happen in the future. But in a market like this, I think it’s really important that we talk abou…
Ionization energy trends | Atomic models and periodicity | High school chemistry | Khan Academy
We’re now going to think about ionization energy trends. What’s ionization energy? It’s the energy required to remove the highest energy electron from an atom. To think about this, let’s look at some data. So right over here is ionization energy plotted …