yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Breaking apart 3-digit addition problems | 2nd grade | Khan Academy
Mike isn’t sure how to add 189 + 608, help Mike by choosing an addition problem that is the same as 189 + 608. Now let’s look at these choices. Let’s just start with this first choice. Actually, all of these choices start with having 1 hundred; they all…
Confucius | The Art of Becoming Better (Self-Cultivation)
Isn’t it the case we should always stay true to ourselves? Which means that we ought to know who we are and organize our lives in ways that are compatible with our personalities? When we look for a partner, for example, we look for someone that we’re comp…
SEC Puts Robinhood on Notice Over Gamestop Ban
[Music] Well guys, we have an update on the Gamestop situation. The SEC, the Securities and Exchange Commission, which is basically like the stock market police over in America, have released a statement recently on the whole Gamestop situation and what …
Graphing negative number addition and subtraction expressions | 7th grade | Khan Academy
In this video, we’re going to add and subtract negative numbers on a number line. The important thing to realize is if you are adding a positive number, you start at some point on the number line and you move that many units to the right. If you are addin…
Analyzing tables of exponential functions | High School Math | Khan Academy
Let’s say that we have an exponential function h of n, and since it’s an exponential function, it’s going to be the form a times r to the n, where a is our initial value and r is our common ratio. We’re going to assume that r is greater than 0. They’ve g…
Honey hunting in the dead of night | Primal Survivor: Extreme African Survivor
I definitely would not want to fall from this height. We need to get to the hive out of the branches and lower it down. We’re going to bring it down. We’re going to lower it. This thing is heavy, yeah, I have it. Bees release pheromones when they’re threa…