yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
watch this if you think life is UNFAIR
This video is brought to you by Squarespace. From websites and online stores to marketing tools and analytics, Squarespace is the all-in-one platform to build a beautiful online presence and run your business. Do you think that life is fair? Compare your…
Using matrices to manipulate data: Pet store | Matrices | Precalculus | Khan Academy
We’re told a certain pet store chain has three types of dog food, and each comes in bags of two different sizes. Matrix A represents the store’s inventory at location A, where rows are food types and columns are bag sizes. So, see, it’s store A that’s wha…
The Stock Market Is FREE MONEY | DO THIS NOW
What’s up, Grandma’s guys? Here, so let’s face it, the stock market is easy money. In fact, in just the last 12 months, both the S&P 500, the Dow Jones, and the NASDAQ are all up over 30 percent. Nearly every single stock you can imagine is up substan…
Curvature formula, part 4
So, we’ve been talking about curvature, and this means, uh, you’ve got some sort of parametric curve that you might think of as parameterized by a vector-valued function s of t. Curvature is supposed to measure just how much this curve actually curves. So…
Introduction to the apostrophe | The Apostrophe | Punctuation | Khan Academy
Hello grammarians! Hello Paige! Hi David! Hello apostrophe! Today we’re going to start talking about a different piece of punctuation, and that piece of punctuation is the apostrophe. It kind of looks like a comma, but it’s one that floats in the air. He…
2014 Berkshire Hathaway Annual Meeting (Full Version)
Thank you. Good morning. Uh, before we start, there are two very special guests that I’d like to introduce. Have stand up. Uh, the first, uh, even though he was on tour, he, uh, took a quick, uh, detour to Omaha to be here today, and will my friend Paul A…