yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Mr. Freeman, part 32
My every word waking within you a series of very thoughtful… You know how it seems? I say, “People, your bread is finished, need to buy bread.” You’re goggled, your eyes with open mouth, your eyes popping out with terror, and I hear your screams… BREAD!!!…
Sampling distribution of sample proportion part 2 | AP Statistics | Khan Academy
This right over here is a scratch pad on Khan Academy created by Khan Academy user Charlotte Allen. What you see here is a simulation that allows us to keep sampling from our gumball machine and start approximating the sampling distribution of the sample …
Linear vs. exponential growth: from data (example 2) | High School Math | Khan Academy
The temperature of a glass of warm water after it’s put in a freezer is represented by the following table. So we have time in minutes and then we have the corresponding temperature at different times in minutes. Which model for C of T, the temperature of…
Hedonism: The Pursuit of Happiness
In 2012, Drake made a song titled “The Motto,” but what most people remember from it is “YOLO.” YOLO tells you to live in the moment, enjoy life you have today, and not worry too much about tomorrow, because at the end of the day, you only live once. Whil…
This Intimate Look at a Woman's Last Days Will Touch Your Soul | National Geographic
I’m not afraid of dying. Sometimes I think dying is a relief. I would rather pass on than to not be able to have any good times. The thing I miss the most is not being able to see the cards and play cards. I miss going to bridge. Can’t eat much at times. …
What I learned from President Obama - Smarter Every Day 151
Hey, it’s me, Destin. Welcome back to Smarter Every Day! I just interviewed the President of the United States of America, which is really strange because I’m not a journalist, I’m not a politician. I’m a rocket engineer. Which means I’m going to come at …