yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
Warren Buffett, Chairman, Berkshire Hathaway Investment Group | Terry Leadership Speaker Series
Good morning. It certainly got quiet quickly. That surprised me. Can you hear me? Are you there? Back well for business school, you know, it doesn’t get much better than this. Having the world’s greatest investor come to our campus is quite a bore. Office…
What Your Income Should Be by Every Age (Individual)
Did you know that from an income perspective, women peak between ages 35 to 54 and men peak between 45 and 64? Do you know if you’re ahead of everyone else or falling behind in terms of how much money you make? Well, let’s put that to the test. Here’s wha…
The Element That Could Kill Billions but Save Millions
Many warnings have been uttered by eminent men of science and by authorities in military strategy. None of them will say that the worst results are certain. What they do say is that these results are possible, and no one can be sure that they won’t be rea…
Analyzing unbounded limits: mixed function | Limits and continuity | AP Calculus AB | Khan Academy
So, we’re told that ( f(x) ) is equal to ( \frac{x}{1 - \cos(e^x) - 2} ), and they ask us to select the correct description of the one-sided limits of ( f ) at ( x = 2 ). We see that right at ( x = 2 ), if we try to evaluate ( f(2) ), we get ( \frac{2}{1…
You Are Not Alone
Sleep is good, death is better; yet surely never to have been born is best. These lines close a 17th century poem by German writer Hinrich Hine. The piece is titled “Death and his Brother’s Sleep.” It compares these two states, suggesting that we experien…
YC Tech Talks: Machine Learning
[Music] foreign [Music] Welcome to YC Tech Talks Machine Learning. I’m Paige from our work at a startup team, the team that helps people get jobs at YC startups. So for tonight’s event, we have Founders who are going to be talking about interesting proble…