yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
A Fish Called Obama | Sea of Hope: America's Underwater Treasures
We were up at Cure, which is at the, uh, farthest island out in the chain. We were down at 300 feet in an area where we’ve documented every single fish. On this reef is a species known only from the Hawaiian Islands. It’s truly the most unique set of fish…
The Closer We Get, The More We Hurt | The Hedgehog’s Dilemma
Once upon a time, a group of hedgehogs faced the cold winter. As they were feeling cold, they decided to move closer to each other and share bodily warmth. Unfortunately, as soon as they crawled together, they hurt each other with their sharp spines. And …
Why MrBeast Philanthropy Will Never Save The World
Mr Beast has cured a thousand people of blindness, built a hundred homes for low-income families across the American continent, removed 33 million pounds of trash from the ocean, planted 20 million trees, and done much, much more. He might seem like a rea…
Time dilation | Special relativity | Physics | Khan Academy
[Voiceover] So let’s revisit a scenario that we have seen in several videos, especially the last video, where we tried to find this neutral frame of reference. Let’s say we’re in spaceship A. We are in an inertial frame of reference. And let’s say right…
Seneca | Why Worry About What Isn't Real? (Stoicism)
In a letter to his dear friend Lucilius, Stoic philosopher Seneca wrote: “There are more things, Lucilius, likely to frighten us than there are to crush us; we suffer more often in imagination than in reality.” End quote. Chronic worriers tend to be more …
Will future robots & AI take over? | How Sci-Fi Inspired Science
Let’s face it, one of the worst things about adulting is having to clean. If we can get out of it in any way, we’ll do it. And since machines are made to make our lives easier, it makes sense we want a machine made to clean. But in sci-fi, we want to go o…