yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
What is love?
I love a lot of things. Some people love sunshine and rainbows. Some love the warmth of summer and the chill of winter. Others love the smell of hot coffee in the morning and the coziness of their bed at night. Some love to travel and go on crazy adventur…
Mario's SECRET BALLS ??!! Mind Blow 4
Oh awesome, a brand new game from Sega to compete with the Nintendo Wii. Oh no! Hey Soldier, what are you doing there in the woods playing Sega? Ah, it’s a pretty big tractor. Oh, what’s this guy doing? I bet he’s going to steal it. I bet he’s going to d…
The FASTEST Way To $ 1 Million Dollars | Grant Cardone
I live off the yield and the dividends. I never touch the investment. I know exactly what I’m going to bring in, and I have the discipline not to spend more than I’m bringing in every month. That’s it. It’s a very simple philosophy in life. The more you m…
When You Miss Someone (An ex, a friend, a family member)
Most of us have been in a position in which we had to say goodbye to someone dear to us. This could be because of the cycle of life and death. But this could also be because of a breakup or being separated from friends by moving to another country. When w…
HOW TO STAY CALM & POSITIVE IN LIFE | MARCUS AURELIUS | STOICISM INSIGHTS
It’s difficult to realize that nearly 2,000 years ago, a Roman emperor confronted many of the same issues that we do today. Marcus Aurelius, a Stoic philosopher and statesman, struggled with uncertainty, authority, and the enormous constraints of empire. …
Are You Lightest In The Morning?
[Applause] So recently a friend of mine says to me, “Derek, you know you’re heaviest at night before you go to bed and lightest in the morning when you wake up.” Okay, but that doesn’t really seem to make sense. “Of course it does. Overnight, you’re not…