yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
The Deadliest Thing in the Universe
13.8 billion years; that’s how long the universe has existed. Older than the planets, stars, as old as time itself. The universe is measurably vast. To put it into perspective, if we reduce that time scale down to a single year, the entirety of recorded h…
Farming for the Planet | Podcast | Overheard at National Geographic
[Music] I’m going to tell you about this place that 10 years ago didn’t even exist. And what created this wasn’t brilliance; it was freedom to allow nature to show us a better way. That’s exactly how my wife Molly and I rebuilt this whole farm over the la…
Improving Life with Exoskeleton Technologies | Breakthrough
Exoskeleton Technologies is a program where we’re working on developing exoskeletons for different applications. National Geographic contacted us about participating in their breakthrough series on a show called “More Than Human.” They asked us to bring F…
Safari Live - Day 154 | National Geographic
And caucuses viewer discretion is advised. Hello everyone and a very warm welcome to our sunset safari drive today, all the way from Juma Game Reserve in South Africa. My name is David and with me, Tree on the camera, AC VM. You might wonder what I have b…
How Hummingbirds Depend on Humans (In SlowMo) - Smarter Every Day 124
Hey, it’s me, Destin. Welcome back to Smarter Every Day. If you’re like me, when you think of hummingbirds, you think of cute little animals that go around drinking out of flowers, and everything is happy and beautiful, right? Well, it’s not. They’re actu…
How to Light a Bonfire with Rockets
The following is for informational purposes only; don’t be idiots like we are. Hey, it’s me, Destin. Mechanical Engineer, University of Alabama. Big loser, likes to play with rockets. This is my buddy Stephen, Electrical engineer, not as much of a loser …