yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable equation with an implicit solution | Khan Academy


2m read
·Nov 11, 2024

We're given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We're given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We're asked, what is x when y is equal to π?

The first thing I like to look at when I see a differential equation is, is it separable? Can I get all the y's and dy on one side, and can I get all the x's and dx's on the other side? This one seems like it is. If I multiply both sides by dx, where you can view dx as the X differential of an infinitely small change in x, well then you get cosine of y + 2 * dy is equal to 2x * dx.

So just like that, I've been able to— all I did is I multiplied both sides of this times dx, but and I was able to separate the y's and the dy from the x's and the dx's. Now I can integrate both sides. So if I integrate both sides, what am I going to get?

The anti-derivative of cosine of y with respect to y is sine of y. Then the anti-derivative of two with respect to y is 2y. That is going to be equal to—well, the anti-derivative of 2x with respect to x is x^2. We can't forget that we could say a plus a different constant on either side, but it serves our purpose just to say plus C on one side.

So this is a general solution to this separable differential equation, and then we can find the particular one by substituting in when x is equal to 1, y is equal to 0. Let's do that to solve for C. So we get, or when y is equal to 0, x is equal to 1.

So sine of 0 + 2 * 0— all I did is I substituted in the zero for y— is equal to x^2. Well now, x is 1, so sine of 0 + C. Well, sine of 0 is 0, 2 * 0 is 0— all of that’s just going to be zero. So we get 0 is equal to 1 + C, or C is equal to -1.

So now we can write down the particular solution to this differential equation that meets these conditions. So we get, let me write it over here: sine of y + 2y is equal to x^2 - 1.

Now, what is x when y is equal to π? So sine of π + 2π is equal to x^2 - 1. Sine of π is equal to 0, and so we get—let's see, we can add one to both sides and we get 2π + 1 is equal to x^2.

Or we could say that x is equal to the plus or minus square root of 2π + 1. So I would write the plus or minus square root of 2π + 1, and we're done.

More Articles

View All
It Started: Housing Prices Are Collapsing
What’s up guys? It’s Graham here. So, we’ve got some bad news for the housing market, and unfortunately, it’s expected to get a lot worse. That’s because a new report just found that nearly 10 percent of homes purchased in the last nine months are now ups…
Gettysburg
So we’ve been talking about the progress of the American Civil War, which started in early 1861 after the 11 states of the South, which were slave states, seceded from the Union and tried to establish an independent nation known as the Confederate States …
A monopsonistic market for labor | Microeconomics | Khan Academy
So let’s continue with our conversation around factors of production for a firm, and we’re going to focus on the labor market. So we’ve already drawn axes like this multiple times, where our horizontal axis this is the quantity, quantity of labor that’s …
Changing the narrative with Nat Geo Photographer Sofia Jaramillo | Hispanic Heritage Month
I first started with photography on a college road trip with my dad, and I took this picture. I remember looking at the back of my camera and just being like, “This is it, this is what I’m gonna do for the rest of my life.” My name is Sophia Jaramillo. I…
Scaling & reflecting absolute value functions: graph | High School Math | Khan Academy
Function G can be thought of as a stretched or compressed version of f of x is equal to the absolute value of x. What is the equation for G of x? So you can see f of x is equal to the absolute value of x here in blue. And then G of x not only does it look…
Filming in a Place of Extremes | Continent 7: Antarctica
Antarctica is a place of extremes. Visibility’s dance 20 laces, it’s cold. They’re always cold, and camera equipment doesn’t work. So, on that cold camping, it’s probably 100 degrees warmer than it is right now. Because Antarctica is so hard to get to, we…