yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Plate tectonics and the ocean floor | Middle school Earth and space science | Khan Academy


3m read
·Nov 10, 2024

Imagine that all the Earth's oceans disappeared for a day, and imagine that you, being the excellent explorer you are, decided to go investigate. You travel across the continental shelf, down the continental slope, and across the abyssal plain. You'd see gaping trenches running deep into the ground and mountains taller than any mountain on the continents. You might wonder what causes such dramatic landscapes to be formed.

Earth's lithosphere, which is made up of the crust and the upper part of the mantle, is broken up into large puzzle piece-like chunks called tectonic plates. These tectonic plates move around slowly over millions of years on the section of the mantle below the lithosphere, which we call the asthenosphere. There are two types of tectonic plates: oceanic plates and continental plates. The continental plates, as you've probably guessed, are the ones that make up the continents. The oceanic plates are the ones that make up the sea floor.

The main difference between oceanic plates and continental plates is the type of crust found on each plate. Oceanic crust and continental crust are made out of different kinds of rock. The continental crust contains a lot of granite, which is an igneous rock; this means that it was made out of rock that was once molten. The oceanic crust has a lot of basalts in it, which is another kind of igneous rock. The difference in the kinds of rock that the crusts are made out of means that the oceanic crust is denser than the continental crust.

If you took a cubic centimeter of the rock from the continental crust, it would be about 2.7 grams. A cubic centimeter from the oceanic crust, on the other hand, would weigh about 3 grams. While this difference in density might not seem like much, it completely changes how tectonic plates interact. The high density of oceanic crust causes oceanic plates to sink into the asthenosphere a bit more than continental plates do. When an oceanic plate collides with another plate at a convergent boundary, it always follows this rule: the denser plates always dive beneath the less dense plate.

When it's an oceanic plate and a continental plate converging, the denser oceanic plate is the one that dips down. When it's two oceanic plates that are colliding, the older, denser oceanic plate will move under the newer and less dense oceanic plate. Over time, the denser plate will be recycled into the asthenosphere. The place where the plates collide is called a subduction zone. This bending of the denser plates under the other creates a trench. The deepest one is the Mariana Trench, which is located where the Pacific plate dives under the Mariana plates. The trench is about 11 kilometers deep.

The plate that sinks into the asthenosphere often has some water and fluids trapped inside of it. These fluids heat up and bubble to the surface. The hot fluids can cause sections of mantle rock to melt into magma, which then rises to the surface and creates volcanoes. You might be wondering: if the seafloor is constantly being destroyed, then what keeps the Earth from shrinking? Well, new seafloor is constantly being created too. This happens when two tectonic plates move away from each other at a divergent boundary.

When two plates diverge in the middle of an ocean, it creates a kind of underwater mountain range called a mid-ocean ridge. As the plates move apart at mid-ocean ridges, magma moves up, cools, and forms a new, younger lithosphere. You can think of this process like a really slow conveyor belt. New ocean seafloor is made at the ridges and moves away from them over millions of years. This means that the oceanic crust that is closest to the ridge is the youngest, and as it moves away from the ridge, the crust gets older and older.

As it ages, the crust becomes cooler and denser, and eventually it dips back down into the asthenosphere at the trenches. The seafloor is perhaps the most unexplored part of our planet, so if they do drain the ocean and you go for a walk at the bottom of the sea, I hope you'll tell us all what it's like down there.

More Articles

View All
2015 AP Biology free response 5
Phototropism in plants is a response in which a plant shoot grows toward a light source. The results of five different experimental treatments from classic investigations of phototropism are shown above. Part A: Give support for the claim that the cells …
Jamie Dimon: The $35 Trillion Dollar Storm Brewing in the US Economy
What you should worry about is the deficit. Today it is 7% of GDP. When Volcker was around and we had very high inflation, it was 3 and a half percent. The debt to GDP is 35% back then, 1982. It’s 100% today. The deficit is the biggest peacetime deficit w…
Why does your vote matter? | US government and civics | Khan Academy
Why does your vote matter? Your vote matters because, uh, in the most specific case, there might be a race where you live for the House or the Senate, or even the presidency, where your vote really could determine who the winner of that race is. We saw i…
A LACK OF FRIENDS INDICATES THAT A PERSON IS VERY.... | STOICISM
When asked about his lack of friends, a stoic man likened friendship to a diamond. Elusive and precious, he said, friendships are rare, valuable, and often surrounded by imitations. After a few errors in judgment, you begin to believe that all friendships…
How the Germans Measured Milliseconds MECHANICALLY - Smarter Every Day 283
[Destin] So this is from the 30s, right? [Ari in a Finnish Accent] …So this is very old… Very old technology. You can put it on by turning it here. [Destin] WHAT!? [Ari calmly acknowledges the awesomeness] Yeah…. And then there’s this kind of stroboscope……
Simple redox reactions | Chemistry | Khan Academy
You have probably heard about this word: oxidation, oxidizing, or antioxidants, and stuff like that. But what exactly does it mean, and what can you do knowing about it? Well, let’s find out. Oxidation has the word oxygen in it; you can see that, right? …