yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Plate tectonics and the ocean floor | Middle school Earth and space science | Khan Academy


3m read
·Nov 10, 2024

Imagine that all the Earth's oceans disappeared for a day, and imagine that you, being the excellent explorer you are, decided to go investigate. You travel across the continental shelf, down the continental slope, and across the abyssal plain. You'd see gaping trenches running deep into the ground and mountains taller than any mountain on the continents. You might wonder what causes such dramatic landscapes to be formed.

Earth's lithosphere, which is made up of the crust and the upper part of the mantle, is broken up into large puzzle piece-like chunks called tectonic plates. These tectonic plates move around slowly over millions of years on the section of the mantle below the lithosphere, which we call the asthenosphere. There are two types of tectonic plates: oceanic plates and continental plates. The continental plates, as you've probably guessed, are the ones that make up the continents. The oceanic plates are the ones that make up the sea floor.

The main difference between oceanic plates and continental plates is the type of crust found on each plate. Oceanic crust and continental crust are made out of different kinds of rock. The continental crust contains a lot of granite, which is an igneous rock; this means that it was made out of rock that was once molten. The oceanic crust has a lot of basalts in it, which is another kind of igneous rock. The difference in the kinds of rock that the crusts are made out of means that the oceanic crust is denser than the continental crust.

If you took a cubic centimeter of the rock from the continental crust, it would be about 2.7 grams. A cubic centimeter from the oceanic crust, on the other hand, would weigh about 3 grams. While this difference in density might not seem like much, it completely changes how tectonic plates interact. The high density of oceanic crust causes oceanic plates to sink into the asthenosphere a bit more than continental plates do. When an oceanic plate collides with another plate at a convergent boundary, it always follows this rule: the denser plates always dive beneath the less dense plate.

When it's an oceanic plate and a continental plate converging, the denser oceanic plate is the one that dips down. When it's two oceanic plates that are colliding, the older, denser oceanic plate will move under the newer and less dense oceanic plate. Over time, the denser plate will be recycled into the asthenosphere. The place where the plates collide is called a subduction zone. This bending of the denser plates under the other creates a trench. The deepest one is the Mariana Trench, which is located where the Pacific plate dives under the Mariana plates. The trench is about 11 kilometers deep.

The plate that sinks into the asthenosphere often has some water and fluids trapped inside of it. These fluids heat up and bubble to the surface. The hot fluids can cause sections of mantle rock to melt into magma, which then rises to the surface and creates volcanoes. You might be wondering: if the seafloor is constantly being destroyed, then what keeps the Earth from shrinking? Well, new seafloor is constantly being created too. This happens when two tectonic plates move away from each other at a divergent boundary.

When two plates diverge in the middle of an ocean, it creates a kind of underwater mountain range called a mid-ocean ridge. As the plates move apart at mid-ocean ridges, magma moves up, cools, and forms a new, younger lithosphere. You can think of this process like a really slow conveyor belt. New ocean seafloor is made at the ridges and moves away from them over millions of years. This means that the oceanic crust that is closest to the ridge is the youngest, and as it moves away from the ridge, the crust gets older and older.

As it ages, the crust becomes cooler and denser, and eventually it dips back down into the asthenosphere at the trenches. The seafloor is perhaps the most unexplored part of our planet, so if they do drain the ocean and you go for a walk at the bottom of the sea, I hope you'll tell us all what it's like down there.

More Articles

View All
Clattering Penguins and Naughty Seals | Epic Adventures with Bertie Gregory on Disney+
Chin straps get their name from that black marking that runs under their chin. Uh, and they’re also sometimes called stone breaker penguins because of that ear-piercing screech. They’re really sociable birds that waddle ashore in these massive numbers to…
The Poverty of Compromise
This idea of questioning things that he, the two you thought were unassailable in a particular domain, for millennia people were wondering about the best way to conceive of what democracy is. Even Plato had this idea of what is democracy, and he had the …
Space Probe Cemetery | Exomars: The Hunt For Life
The first successful Mars mission was in 1964. Along the way, Mars would become the space probe cemetery. Bogalusa, a lot of space probes have been lost along the way; some of them we lost track of upon their arrival. Others flew past the planet without s…
Partial derivative of a parametric surface, part 1
So we’ve just computed a vector-valued partial derivative of a vector-valued function, but the question is, what does this mean? What does this jumble of symbols actually mean in a, you know, more intuitive geometric setting? That has everything to do wi…
Blacksmith for Barter | Live Free or Die
Gonna be a hot one today in the mountains of Colorado. Primitive blacksmith Derik fires up his forge to nearly 2500 degrees, the ideal temperature to mold iron. Today I’m gonna continue working on my camp set, try to finish that out—four more pieces beca…
5 Fun Physics Phenomena
[Applause] Five fun physics phenomena. Number one: Have a friend hold a cane out horizontally for you, or another similar object. Putting your two index fingers together, try to place them underneath the center of mass. When they let go, you will find i…