yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

KVL in the frequency domain


5m read
·Nov 11, 2024

As we do AC analysis and we do operations in the frequency domain, we need to bring along Kirchhoff's laws so that we can make sense of circuits. So in this video, I'm going to basically show that Kirchhoff's voltage law works in the frequency domain.

What I have here is a circuit that has some voltage source, an AC voltage source. Let's put AC on it like that. It has three impedances connected. Inside each of these boxes is an R and L or a C, and we're not going to show which because we're going to carry these along just as general impedances.

In AC analysis, the voltages are all cosine waves. So ( V_{in} = V_m \cos(\Omega t + \phi_0) ), where ( V_m ) is some voltage amplitude and ( \phi_0 ) is some starting phase shift. This is our input signal. Now let me label the voltages on everything else. We'll call this ( V_1 ) and I'm going to label it this way here. This will be ( V_2 ) and I'll put it upside down like that: plus and this will be ( V_3 ) minus plus ( V_3 ).

Now that I have ( V_1 ) here, let's change the name of this to ( V_0 ) just so I don't get ( I ) and ( 1 ) mixed up. So we'll change that to ( V_0 ). The input source is ( V_0 ), and that's that voltage.

Now, when we apply KVL to this, Kirchhoff's voltage law, what it says is if we start in a corner, if we start somewhere in the circuit, let's start right here and go around the loop, it should add up to zero volts. That's KVL for normal DC circuits, and we're going to see how that applies to AC circuits here.

In the time domain, we say that ( V_0 + V_1 + V_2 + V_3 = 0 ). So let's talk about how this is going to turn out. Well, what do we know right now? Well, we know that ( V_0 ) is a cosine wave at some phase angle.

Now, what do we know about the other voltages? In this AC analysis, what we're doing is we're looking for a forced response. We've let the natural responses die out; there's no switch in this circuit, and we just assumed the circuit has been in this state forever. The natural response has died out, and that means we're looking for the forced response.

So what we know is we have three voltages. We know that all these voltages are going to resemble the input voltage. They're all going to be sinusoids. All the voltages here are going to be AC sinusoids because the forcing function is a sinusoid. The other thing we know is they're all going to have the same ( \Omega ); the frequency of this voltage and this voltage and this voltage is going to be identical to ( \Omega ).

Here, I'm going to put a big bang there. That's really important. In an AC circuit, when you're driving it from a frequency, every other frequency in the system is the same frequency. This is a linear system, and linear components—if we've done all the analysis—don't create new frequencies. They're all ( \Omega ).

Now, some other things we know: there's going to be phase shifts involved here. Remember when we do impedance? We are multiplying it by ( j ) and rotating things by 90 degrees. So we're going to have different ( \phi ) for each one. The other thing we're going to have is we're going to have different amplitudes. The amplitude of ( V_1 ) could be different than the amplitude of ( V_2 ).

So this is what an AC solution is going to look like. Let's move on a little further here. What I'm going to do now is we're going to take this input voltage plus these things that we know here, and we're going to see how Kirchhoff's voltage law works in the frequency domain when we work with these transformed Z's, these impedances. Okay, let's go ahead and do that.

Let's do a little more in the time domain, and we'll write out our KVL equation again. So the KVL equation was ( V_0 \cos(\Omega t) + V_1 \cos(\Omega t + \phi_1) + V_2 \cos(\Omega t + \phi_2) + V_3 \cos(\Omega t + \phi_3) = 0 ).

Now, all these ( \Omega )s are the same exact number, the same radian frequency. All the ( \phi )s are different, and all the ( V_2 )s and ( V_3 )s are different.

Okay, now I'm going to switch to complex exponential notation. We're just changing notation here. We could represent this number as the real part of ( V_0 e^{j(\Omega t + \phi_0)} ). That's exactly the same as this cosine can be represented as the real part of a complex exponential with this frequency.

I can write out the rest of these: ( V_1 e^{j(\Omega t + \phi_1)} + V_2 e^{j(\Omega t + \phi_2)} + V_3 e^{j(\Omega t + \phi_3)} = 0 ).

One thing I can do next is we can start to factor this. We can start to take this apart a little bit. I know that if I have the expression ( e^{j(\Omega t + \phi)} ), just in general, I can change that by exponent properties to ( e^{j \phi} e^{j \Omega t} ).

So I'm going to do this transformation on all four of these terms here. Let's keep going. So we're still working on this. Let’s go the real part now. I'm going to take apart ( V_0 ) here, and I get ( V_0 e^{j\phi_0} e^{j\Omega t} + V_1 e^{j\phi_1} e^{j\Omega t} + V_2 e^{j\phi_2} e^{j\Omega t} + V_3 e^{j\phi_3} e^{j\Omega t} = 0 ).

Here's a nice simplification. We take out this common term; we factor out this common term across the entire equation. What do we come up with? We come up with the result: ( (V_0 e^{j\phi_0} + V_1 e^{j\phi_1} + V_2 e^{j\phi_2} + V_3 e^{j\phi_3}) e^{j\Omega t} = 0 ).

We're getting close! How do we make this equation zero? Does ( e^{j\Omega t} ) ever become zero? Well, ( e^{j\Omega t} ) is a rotating vector. It's never zero, so that's not going to do it.

That means that this other term here has to be equal to zero. So how am I going to do that? I'm going to make one more notational change. This kind of number here is ( e^{j\phi} ) is called a phasor; it's some amplitude times ( e^{j\text{angle}} ) and there's no time up here. There’s no time; the time is only over here. This is the only place the time appears in the equation, and this is the only place that ( \Omega ) appears in the equation, and these are just phase angles, starting phase angles.

So my notation for a phasor is going to be: this is going to be called ( \overline{V_0} ), and I'm going to put a line over it to indicate that it's a complex vector, and that equals ( V_0 e^{j\phi_0} ). So when you see the vector symbol and ( \overline{V} ), that's that right there.

Now we can write finally that ( \overline{V_0} + \overline{V_1} + \overline{V_2} + \overline{V_3} = 0 ). So this is KVL in the frequency domain. Fortunately, it looks exactly like KVL that we remember from our DC analysis—the sum of the voltages going around the loop is equal to zero, and in this case, it's the sum of the phasors going around the loop that is equal to zero.

More Articles

View All
Population diversity and resilience | Natural selection | AP Biology | Khan Academy
So let’s imagine that each of these little circles here represent a member of a population of bugs. We have two different populations of bugs. You could view this as population 1 on the left side of this orange line and population 2 on the right side of t…
Article V of the Constitution | National Constitution Center | Khan Academy
[Kim] Hey, this is Kim from Khan Academy, and today I’m learning about Article Five of the U.S. Constitution, which describes the Constitution’s amendment process. To learn more about Article Five, I talked to two experts, Professor Michael Rappaport, who…
Memento Mori | Stoic Exercises For Inner Peace
Life is short. It’s ticking away and seems to pass by faster as we get older. Despite this, many people waste their lives on trivial things. But there’s an antidote. Thinking about death not only reminds us that we have a limited amount of time to do the …
How to make money on Youtube in 2022 - How much money I made this year
This video is brought to you by Squarespace. From building websites to online stores, tools and analytics, Squarespace is an all-in-one platform to create a beautiful presence online and run your business. Today, I’m going to explain how you can make mon…
Acts of Humankind | National Geographic
Our world is filled with beauty, but also tremendous power. There are forces of nature on our planet that can wreak incredible havoc, destruction, and devastation. Forces that seem unstoppable. But for every act of nature, there’s a force that is equally…
Harmonic Functions
Hello everyone. So, here I’d like to talk about harmonic functions. Now, harmonic functions are a very special kind of multivariable function, um, and they’re defined in terms of the Laplacian, which I’ve been talking about in the last few videos. So, th…