yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying proportional relationships from graphs | 7th grade | Khan Academy


2m read
·Nov 11, 2024

We are asked how many proportional relationships are shown in the coordinate plane below, and we have the choices. But let's actually look at the coordinate plane below to think about how many proportional relationships are depicted here. So pause this video and try to answer that yourself.

So let's do this together. If we're thinking about a proportional relationship or the graph of a proportional relationship, there should be two things that we're looking for. One, it should be a line; it should be a linear relationship between the two variables. Y should be some constant, some proportionality constant times X.

So you immediately would rule out our green curve here because this is not a line. You don't have a constant relationship between Y being some proportionality constant times X. And for the same reason, you would rule out this blue curve.

Now what about this purple line? This might be tempting because it is a line, but it does not go through the origin. When X is 2, Y is 0 times X, while when X is 4, Y is 1 times X, and when X is 6, Y looks to be 1 1/3 times X. So you don't have the same proportionality constant the entire time. So we have zero proportional relationships depicted here, so I would pick 0 there.

Let's do one more example. Natalie is an expert archer. The following table shows her scores (points) based on the number of targets she hits. All right, targets hit and then the points she gets. Plot the order pairs from the table.

All right, so the first one is (1, 3). So here I'm doing it on Khan Academy. My horizontal axis is targets hit, and my vertical axis is points. So one target hit, three points. So this is going to be one target hit; this is going to be three points.

Then I have two targets hit, six points. So two targets hit, and I have six points. And then I'm gonna have three or five targets hit, 15 points. So then I'm going to have, going to have five targets hit, and that is going to be 15 points.

And so this is looking like a proportional relationship in every situation. My point is equal to three times the targets hit, so my proportionality constant is three. And you can see if you try to connect these dots with a line, it will be a line. A line can go through all three of these, and it will go through the origin.

So are Natalie's points proportional to the number of targets she hit? Yes, absolutely.

More Articles

View All
BEST IMAGES OF THE WEEK: IMG! Episode 23
Mr. Tea Time and Obama plays the trombone. It’s episode 23 of IMG. Is this Wolverine or two Batmans? And this is where to get all our cursors. Grandpa’s awesome, then still awesome now, especially when they do this. Here are women’s faces from all over t…
Wu-wei | The Art of Letting Things Happen
Once upon a time, a novice farmer indulged himself in motivational videos. He became familiar with ideas like the importance of ‘effort,’ the ‘hustle culture,’ and ‘work hard, play hard.’ After binge-watching for days, he walked onto his farm, fired up, …
Ray Dalio & Bill Belichick on Learning from Failure
So another thing about us we were talking about is uh uh failure. Like I had my big failure in 1982. Like in my case, I um made a terrible call in the markets, and whatever it is, and I went broke. I uh lost money, and I had to borrow $4,000 from my dad t…
Win Without Trying (A Taoist simile about losing your flow)
Competitions can be nerve-wracking. The more we live up to the day on which we are supposed to shine, the more anxiety builds up. What if I perform badly? What if something goes wrong? An Olympic swimmer trains thousands of hours just to get that medal. A…
JEFF VS. ADAM: Nerd Wars!
It’s a nerd force! Oh good, what style are we doing it now? Alright, so welcome to Nerds War. There’s a very special Nerds War. We didn’t prep because I sliced my finger—[ __ ] oh um, so we’re doing a Nerds War extreme! Adam vs. Jeff! Said, I’m playing A…
Parametric surfaces | Multivariable calculus | Khan Academy
So I have here a very complicated function. It’s got a two-dimensional input—two different coordinates to its input—and then a three-dimensional output. Uh, specifically, it’s a three-dimensional vector, and each one of these is some expression. It’s a bu…