yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
Radical functions differentiation | Derivative rules | AP Calculus AB | Khan Academy
Let’s see if we can take the derivative with respect to (x) of the fourth root of (x^3 + 4x^2 + 7). At first, you might say, “All right, how do I take the derivative of a fourth root of something?” It looks like I have a composite function; I’m taking the…
Sine equation algebraic solution set | Trigonometry | Precalculus | Khan Academy
The goal of this video is to find the solution set for the following equation, so all of the x values. And we’re dealing with radians that will satisfy this equation. So I encourage you, like always, pause this video and see if you can work through this o…
Make Strippers HOTTER and More! VSAUCE WTFs
Want some extra B sauce on your wtf? Well, you’re in luck! Ready, set, go! Wait, Toad, what are you doing? I—oh, clever! Taking advantage of a game’s glitch to shorten your lap time is one thing, but patience is another. See that guy over there? Let’s sh…
Dividing a whole number by a fraction with reciprocal
In this video, we’re going to do an example that gives us a little bit of practice to think about what does it mean to divide by a fraction. So if we want to figure out what eight divided by seven-fifths is, we’re going to break it down into two steps. F…
Nuclear Energy Explained: How does it work? 1/3
Have you ever been in an argument about nuclear power? We have, and we found it frustrating and confusing, so let’s try and get to grips with this topic. It all started in the 1940s. After the shock and horror of the war and the use of the atomic bomb, n…
Dividing mixed numbers example
Let’s see if we can figure out what four and four-fifths divided by one and one-half is, and I encourage you to pause the video and see if you can figure it out on your own. And I’ll give you a hint: see if you can rewrite these mixed numbers as what is s…