yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
Power LED Lights + Injection. Complete Walkthrough
In this video I’m going to show you the three most common ways to power LED strips as well as how to inject power in your longer runs for the lights. In this tutorial, I’ll be using three identical sets of BTF Lighting WS2812B LED strips. Each strip is fi…
How To Polish A Car For Beginners || Remove Swirls and Scratches || Car Polish
Welcome back to Stauffer Garage, guys! In today’s video, I’m going to be showing you how to remove any swirl marks or light scratching on your car’s paint. So the first step is to make sure you have your car washed. Your car is clean of any contaminants …
The More You Want, the Worse It Gets | The Seven Deadly Sins | GREED
How do you catch a monkey? There’s a simple and effective way to do it without hurting the animal. Once there was a farmer who cut a hole in a coconut, which was just big enough for the monkey to slide in his hand. He tied the coconut to a tree and put a …
TOP 10 ECLIPSE DAY Things to know (please share) - Smarter Every Day 174
Hey, I am Destin. If there is one video you want to share about the eclipse, make it this one. Top 10 things you need to know about eclipse day in just a couple of minutes. Number 1 - Know where you’re going to watch the eclipse from. There is this thin…
Bare/bear, allowed/aloud, advice/advise, break/brake | Frequently confused words | Usage | Grammar
Hello Grim Marians, hello a man, hello uh! Today, we’re going to be talking about four sets of frequently confused words, and the one that I want to begin with is “advice” and “advise.” How do we keep these two words straight? Well, first of all, “advice…
How the comfort zone is ruining your life
[Music] There’s a weird phenomenon I’ve noticed all throughout my life where the more I subject myself to discomfort, the happier I am. I think this phenomenon became increasingly apparent to me in first year of university where I wanted to make the best …