yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
When the functions of money break down: Hyperinflation | AP Macroeconomics | Khan Academy
So in the last video, I was talking about various functions of money. You know, the first was that it’s a medium of exchange. If you want to trade for things, typically you give someone money, and they give you the thing, rather than trying to barter, tra…
Lecture 14 - How to Operate (Keith Rabois)
So I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product that at least some people love, that you prob…
Intro to determinant notation and computation | Matrices | Precalculus | Khan Academy
In this video, we’re going to talk about something called determinants of matrices. So I’ll start just telling you the notation and how do you compute it, and then we’ll think about ways that you can interpret it. So let’s give ourselves a 2 by 2 matrix …
If You Haven’t Solved These You’re Not as Smart as You Think You Are
If you’re so smart, why aren’t you rich? If you’re so smart, why aren’t you happy, fit, or fulfilled? You see, Alexus, the only real IQ test is if you get what you want in life. If you haven’t solved these, you’re not as smart as you think you are. Welco…
Photographing America’s Wounded Soldiers in Iraq | Nat Geo Live
In 2004, I got a call from LIFE magazine. They said we have this incredible assignment for you. It’s to photograph the wounded coming out of Fallujah. When we flew in, this is one of the first scenes I saw. This is on my birthday in 2004, and it was durin…
The More You Want, the Worse It Gets | The Seven Deadly Sins | GREED
How do you catch a monkey? There’s a simple and effective way to do it without hurting the animal. Once there was a farmer who cut a hole in a coconut, which was just big enough for the monkey to slide in his hand. He tied the coconut to a tree and put a …