yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
ORDERING EVERYTHING ON THE MENU WITH YOUTUBE AD REVENUE
What’s up you guys? It’s Graham here! So thanks to all of you watching my videos, I made about $200 so far on YouTube ad revenue. Now, instead of just going and putting that money in my bank account, I thought it would be a lot more fun to give it all bac…
THE GAME OF LIFE and other DONGs!
Hey, Vsauce. Michael here with some things you can do online now, guys. Let’s start the DONGs off in the right hands with misternicehands.com. You can pull his finger. Wordle.net analyzes text, like on a web site, and generates a free word cloud with fun…
Juvenoia
Hey, Vsauce. Michael here. Skeletons are scary and spooky, but you know what else is? Teenagers. Their attitude, the way they dress, and the music they listen to. Can you even call it music? Pff, kids these days. But what are kids these days? What’s with …
Extraneous solutions of radical equations | Mathematics III | High School Math | Khan Academy
Let’s say we have the radical equation (2x - 1 = \sqrt{8 - x}). So we already have the radical isolated on one side of the equation. We might say, “Well, let’s just get rid of the radical; let’s square both sides of this equation.” So we might say that …
The Fascinating Lives of Bleeding Heart Monkeys (Part 3) | Nat Geo Live
Geladas aren’t afraid of all predators. You’re looking at the Ethiopian wolf. This occurs on the Guassa, and it’s the rarest canid in the world. There’s only about 400 remaining in Ethiopia, and 40 of them are at Guassa. They’re social, but during the day…
How NASA's Next Mars Mission Will Take the Red Planet's Pulse | Decoder
A ball of fire pierces the atmosphere of Mars, plummeting towards the surface at 13,200 miles per hour. This fireball across the horizon marks the end of a 301 million mile journey for NASA’s InSight and the beginning of a groundbreaking mission. For five…