yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
Preparing for Mules | Live Free or Die
In the wilderness, economy doesn’t exist. The only economy we have is an economy of motion. I have no electricity, no running water. If the world came to an end, I could totally take care of myself. My blacksmithing puts food on the table; it’s my main me…
BEST of MARGIN CALL #3 - First Meeting
So, Sam, what do you have for us? It’ll be here in a minute. Finding somebody in the copy room at this hour was a little bit of a challenge. Okay, let’s go right into the introductions. This is Sarah Robertson, who you know. Chief Risk Management Office…
The Better Customer–Startups or Big Enterprise?
I just want to turn my startup into like a real-time strategy game where I can sit at my computer and click on things and watch numbers go up. If I can do that and just sit on the couch and have people bring me food while I click things, we’re in good sha…
Watches Under $1,000 For Your Collection With Teddy Baldassarre (10+ Watches Featured)
Th000. M yes, stop them! Madness! Steady 400 bucks; you can’t go wrong. This is crazy good, I’m telling you right now, this is going to be one of my top three. Hi, Mr. Wonderful here in Cleveland, Ohio, for the first time at Teddy’s new retail store. Very…
Newton's third law | Physics | Khan Academy
Earth puts a force on an apple making it fall down. But the question is, does the apple put a force on the Earth as well? And if it does, is that force bigger, smaller, or the same? That’s what we want to find out in this video. Now, to try and answer th…
If I Had To Start Over, This is What I Would Do #shorts
Well, what a great place to get a question like that, right in the heart of Beverly Hills. You can’t come here without any money; you’ve got to make money first. And the way you do that, if you had nothing, I would use the advantage of the internet that …