yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
Ponzi Factor | SEC Meeting 1
Hi everyone, this is Thanh. A quick note, kind of exciting news! I am in the process, as in either this morning or next hour or so, I’m gonna go into a roundtable meeting with the chairman of the ICC, J. Clayton, and also some other senior officials of th…
Plesiosaurs 101 | National Geographic
(water splashes) (ominous music) [Narrator] Sea monsters are considered to be mythical creatures at the center of tall tales. (lighting crackling) But science tells a story of real-life monsters lurking in Earth’s prehistoric seas, monsters called plesi…
Mega Dust Storms | MARS
[music playing] JIM GREEN: We’ve been studying the dust storms of Mars for quite some time. And there’s a particular season where some of the dust storms can actually go global. Not just regional, but global. Dust storms on Mars can be absolutely enormou…
Dopamine Detox: Become Invincible
What if I told you that you’re an addict and you don’t even know it? Don’t worry, you’re not alone. We all are, or most of us at least. And here’s a little experiment to prove it: once this video ends, turn off your phone and leave it in a drawer for the…
New and Improved | Wicked Tuna
This is it, boys! Let’s make it happen. It’s the first day of the season, and I could not be more excited. Nothing’s stopping us this year, and we are going on a war path. We’re going to Main, and we’ve got to get it done. Main is where all the baas, and …
Inside the Dark World of Captive Wildlife Tourism | National Geographic
(sighs) Jesus. We came behind the stadium where the elephants perform, and we found this juvenile elephant. He had gaping red wounds at his temple. He also has a broken leg. The other one is chained up. He looks totally emaciated. Skin and bones. And this…