yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving equations by graphing | Algebra 2 | Khan academy


3m read
·Nov 10, 2024

Let's say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve.

The way that I would at least attempt to tackle it is to say this is (2^{x^2 - 3} = x^{-\frac{1}{3}}). I could rewrite this: (1) over (x^{\frac{1}{3}}) is (x^{-\frac{1}{3}}). Maybe I can simplify it by raising both sides to the negative (3) power.

So then I would get: if I raise something to an exponent, then raise that to an exponent, I can just multiply the exponents. It would be (2^{-3(x^2 - 3)}). I just multiplied both of these terms times (-3), which is equal to (x^{-\frac{1}{3}}^{-3}). Negative (\frac{1}{3}) times negative (3) is just (1), so that's just going to be equal to (x).

It looks a little bit simpler, but still not so easy. I could try to take (\log_2) of both sides, and I’d get: (-3x^2 + 9 = \log_2{x}). But once again, I’m not having an easy time solving this.

The reason why I gave you this equation is to appreciate that some equations are not so easy to solve algebraically. But we have other tools! We have things like computers. We can graph things, and they can at least get us really close to knowing what the solution is.

The way that we can do that is we could say, “Hey, what if I had one function, or one equation, that was (y = 2^{x^2 - 3})?” I should say, and then you had another that was (y = \frac{1}{\sqrt[3]{x}}).

Then you could graph each of these and see where they intersect. Because where they intersect, that means (2^{x^2 - 3}) is giving you the same (y) as (\frac{1}{\sqrt[3]{x}}). Or another way to think about it is, they're going to intersect at an (x) value where these two expressions are equal to each other.

So what we could do is go to a graphing calculator or a site like Desmos and graph it to at least try to approximate what the point of intersection is. So let's do that. I graph this ahead of time on Desmos, so you can see here this is our two sides of our equation.

But now we've expressed each of them as a function. Right here in blue, we have (2^{x^2 - 3}). We can even say this is (y = f(x)), which is equal to (2^{x^2 - 3}). In this yellowish color, I have (y = g(x)), which is equal to (\frac{1}{\sqrt[3]{x}}).

We can see where they intersect. They intersect right over there, and we're not going to get an exact answer. But even at this level of zoom and on a tool like Desmos, you can keep zooming in to get a more and more precise answer.

In fact, you can even scroll over this and it can even tell you where they intersect. But even if we're trying to approximate, just looking at the graph, we can see that the (x) value right over here looks like it is happening at around, let's see, this is (1.5), and each of these is a tenth, so this is (1.6).

It looks like it's about two-thirds of the way to the next one, so this looks like approximately (1.66). If you were to actually find the exact solution, you'd find this awfully close to (1.66).

So the whole point here is that even when it's algebraically difficult to solve something, you could set up or restate your problem, or reframe your problem in a way that makes it easier to solve. You can set this up as, “Hey, let's make two functions, and then let's graph them and see where they intersect.”

The (x) value where they intersect? Well, that would be a solution to that equation. And that's exactly what we did right there: we’re saying that, “Hey, the (x) value, the (x) solution here, is roughly (1.66).”

More Articles

View All
Black Hole Star – The Star That Shouldn't Exist
Black hole stars may have been the largest stars that ever existed. They burned brighter than galaxies and were larger than any star today or that could ever exist in the future. But besides their scale, what makes them special and weird is that deep insi…
Introduction to vitamins and minerals | Biology foundations | High school biology | Khan Academy
We’ve been told throughout our lives to eat certain foods because they contain vitamins, or sometimes people might say they also contain some minerals that you need. So the obvious question is, well, what are vitamins and what are these minerals that fol…
Canada's Largest Drug Bust | Narco Wars: The Mob
You have to be pretty top notch in your profession just to survive it all. You get heavy turbulence; you got to slow the aircraft down because you could have structural failure, like losing a wing. Wouldn’t be much fun! A North Atlantic storm in November,…
Presidential precedents of George Washington | US government and civics | Khan Academy
Hi, this is S, and I’m here with Jeffrey Rosen, who’s the head of the National Constitution Center in Philadelphia. In the first video, we did an overview of Article Two of the Constitution, which covers the powers of the presidency. Now we’re going to ju…
Zeros of polynomials: plotting zeros | Polynomial graphs | Algebra 2 | Khan Academy
We’re told we want to find the zeros of this polynomial, and they give us the polynomial right over here, and it’s in factored form. They say plot all the zeros or the x-intercepts of the polynomial in the interactive graph. This is a screenshot from Khan…
Khan Academy Ed Talks featuring Asst. Supt. Beth Gonzalez - Thursday, Dec. 17
Hi everyone! Sal here from Khan Academy. Welcome to the Ed Talks live stream subset of the Homeroom. We have a very exciting conversation with Beth Gonzalez, Assistant Superintendent of Detroit Public Schools. So, start thinking of questions for Beth, and…