yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Non-congruent shapes & transformations


2m read
·Nov 10, 2024

  • [Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here's the center of it. This is circle M, this circle right over here. It looks like at first, she translates it. The center goes from this point to this point here. After the translation, we have the circle right over here. Then she dilates it. The center of dilation looks like it is point N. She dilates it with some type of a scale factor in order to map it exactly onto N. That all seems right.

Brenda concluded, "I was able to map circle M onto circle N using a sequence of rigid transformations, so the figures are congruent." Is she correct? Pause this video and think about that. Let's work on this together. She was able to map circle M onto circle N using a sequence of transformations. She did a translation and then a dilation.

Those are all transformations, but they are not all rigid transformations. I'll put a question mark right over there. A translation is a rigid transformation. Remember, rigid transformations are ones that preserve distances, preserve angle measures, preserve lengths, while a dilation is not a rigid transformation.

As you can see very clearly, it is not preserving lengths. It is not, for example, preserving the radius of the circle. In order for two figures to be congruent, the mapping has to be only with rigid transformations. Because she used a dilation, in fact, you have to use a dilation if you wanna be able to map M onto N because they have different radii, then she's not correct. These are not congruent figures. She cannot make this conclusion.

More Articles

View All
Parallel resistors (part 1) | Circuit analysis | Electrical engineering | Khan Academy
In this video, we’re going to look at another familiar pattern of resistors called parallel resistors. I’ve shown here two resistors that are in parallel. This resistor is in parallel with this resistor, and the reason is it shares nodes. These two resist…
Netherlands in 100 Seconds | National Geographic
[Music] What do the Netherlands really look like? To get a better sense of proportion, let’s go on a 100-second walk across the nation. Each second of the walk reveals one percent of the lands and how they look from above. Are you ready for the Netherland…
How To Find A Co-Founder | Startup School
[Music] Hey everyone, I’m Harge Tagger. I’m one of the group partners here at Y Combinator, and today I’m going to talk about co-founders. We’re going to cover why do you even need a co-founder, when’s the right time to bring on a co-founder, and where ca…
"STOP DOING THIS If You Want To Be SUCCESSFUL IN LIFE!" | Kevin O'Leary
I’m the mean shark. I’m not the mean shark. I’m the only shark that tells the truth. My wife’s sitting there, and with my daughter, and he stops and says to them, “Hey, that guy from Shark Tank is sitting in the can, that [ __ ] Kevin O’Leary.” And Linda …
The Napkin Ring Problem
Hey, Vsauce! Michael here! If you core a sphere; that is, remove a cylinder from it, you’ll be left with a shape called a Napkin ring because, well, it looks like a napkin ring! It’s a bizarre shape because if two Napkin rings have the same height, well t…
Harj Taggar - Choosing a Startup to Work At
Hey everyone, I’m Harj. I’m a partner at Y Combinator, and I’m going to answer how do you choose a startup to work at. So the first thing is to be sure you actually want to work at a startup. Working at a startup is not for everyone. It’s a very unique e…