yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Non-congruent shapes & transformations


2m read
·Nov 10, 2024

  • [Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here's the center of it. This is circle M, this circle right over here. It looks like at first, she translates it. The center goes from this point to this point here. After the translation, we have the circle right over here. Then she dilates it. The center of dilation looks like it is point N. She dilates it with some type of a scale factor in order to map it exactly onto N. That all seems right.

Brenda concluded, "I was able to map circle M onto circle N using a sequence of rigid transformations, so the figures are congruent." Is she correct? Pause this video and think about that. Let's work on this together. She was able to map circle M onto circle N using a sequence of transformations. She did a translation and then a dilation.

Those are all transformations, but they are not all rigid transformations. I'll put a question mark right over there. A translation is a rigid transformation. Remember, rigid transformations are ones that preserve distances, preserve angle measures, preserve lengths, while a dilation is not a rigid transformation.

As you can see very clearly, it is not preserving lengths. It is not, for example, preserving the radius of the circle. In order for two figures to be congruent, the mapping has to be only with rigid transformations. Because she used a dilation, in fact, you have to use a dilation if you wanna be able to map M onto N because they have different radii, then she's not correct. These are not congruent figures. She cannot make this conclusion.

More Articles

View All
INSANE BEATBOX and Other MOUTH NOISES -- BOAT
Here’s a guy whose mouth can sound like an engine. And this woman can be a human car alarm. But are those the best mouth noises of all-time? And better yet, what happened to my beard? Well, to figure out the answer to this one, you’ll have to wait for ‘Th…
Changes in the AD-AS Model and the Phillips curve | APⓇ Macroeconomics | Khan Academy
In this video, we’re going to build on what we already know about aggregate demand and aggregate supply and the Phillips curve, and we’re going to connect these ideas. So first, the Phillips curve. This is a typical Phillips curve for an economy. High in…
The Only Dog Still Alive From The 90s
A lot of us remember the 99s, but only one dog does. Spike is the oldest known dog still alive today, who was born in the 1990s. But not everyone believes him. Last year, Guinness World Records recognized his significance, but then just a few months ago, …
Filming Glow-in-the-Dark Critters | Best Job Ever
[Music] Being a wildlife cameraman, it’s a whole discovery of technical knowledge. I’m working with Paul Merrick, who is a grantee of the National Geographic Society. Dr. Merrick studies millipedes, and we’re headed out to film them in their natural habi…
Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy
So we’re told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they’re giving the graphing the derivative of G. G prime is given below. So this isn’t the graph of G; this is the graph of G p…
Beta decay | Physics | Khan Academy
Did you know that paper industries can use radioactivity to ensure consistent thickness throughout the paper? That’s right! But doesn’t it make you wonder how do you use radioactivity to do that? Well, let’s find out. If you have a very heavy nucleus, th…