yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Non-congruent shapes & transformations


2m read
·Nov 10, 2024

  • [Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here's the center of it. This is circle M, this circle right over here. It looks like at first, she translates it. The center goes from this point to this point here. After the translation, we have the circle right over here. Then she dilates it. The center of dilation looks like it is point N. She dilates it with some type of a scale factor in order to map it exactly onto N. That all seems right.

Brenda concluded, "I was able to map circle M onto circle N using a sequence of rigid transformations, so the figures are congruent." Is she correct? Pause this video and think about that. Let's work on this together. She was able to map circle M onto circle N using a sequence of transformations. She did a translation and then a dilation.

Those are all transformations, but they are not all rigid transformations. I'll put a question mark right over there. A translation is a rigid transformation. Remember, rigid transformations are ones that preserve distances, preserve angle measures, preserve lengths, while a dilation is not a rigid transformation.

As you can see very clearly, it is not preserving lengths. It is not, for example, preserving the radius of the circle. In order for two figures to be congruent, the mapping has to be only with rigid transformations. Because she used a dilation, in fact, you have to use a dilation if you wanna be able to map M onto N because they have different radii, then she's not correct. These are not congruent figures. She cannot make this conclusion.

More Articles

View All
Definite integral of piecewise function | AP Calculus AB | Khan Academy
So we have an f of x right over here, and it’s defined piecewise. For x less than zero, f of x is x plus one. For x greater than or equal to zero, f of x is cosine of pi x. We want to evaluate the definite integral from negative one to one of f of x dx. …
Rotational kinetic energy | Moments, torque, and angular momentum | Physics | Khan Academy
[Voiceover] When a major league baseball player throws a fast ball, that ball’s definitely got kinetic energy. We know that cause if you get in the way, it could do work on you, that’s gonna hurt. You gotta watch out. But here’s my question: does the fa…
The Harder You Try, The Worse It Gets | Law of Reversed Effort
Have you ever tried petting a cat, but every time you come closer, the cat runs away and keeps watching you from a distance? Then, you walk towards the cat in a second attempt, but it runs away again. When you approach the cat a third time, it flees and d…
Simple Products That Became Big Companies – Dalton Caldwell and Michael Seibel
A product that doesn’t work with lots of features is infinitely worse than a product with one feature that works. And again, like, let’s play that out. Let’s play that out. Right? Imagine if it’s like they were like, you get health care and you get benef…
This Video Will Hurt
Please, put on your headphones – I promise that there won’t be any loud sounds, but this video is going to hurt. There’s a study about hypersounds and how they cause headaches: these sounds are too high-pitched to hear – like the one added to this video, …
Bear Grylls shows Bradley Cooper how to cross a ravine | Running Wild with Bear Grylls
I see you looking across there. My hunch is we’re going to cross that sucker. It’s got to find somewhere to do it. Yes, that’s the thing that’s scary. It looks terrifying. You know, I’m pretty terrified of heights, but as I’ve gotten older, I really wante…