yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cumulative geometric probability (greater than a value) | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Amelia registers vehicles for the Department of Transportation. Sports utility vehicles, also known as SUVs, make up 12% of the vehicles she registers. Let V be the number of vehicles Amelia registers in a day until she first registers an SUV. Assume that the type of each vehicle is independent.

Find the probability that Amelia registers more than four vehicles before she registers an SUV.

So, let's just first think about what this random variable V is. It's the number of vehicles Amelia registers in a day until she registers an SUV. For example, if the first person who walks in the line or through the door has an SUV and they're trying to register it, then V would be equal to one. If the first person isn't an SUV, but the second person is, then V would be equal to two, and so forth and so on.

This right over here is a classic geometric random variable. We have a very clear success metric for each trial: Do we have an SUV or not? Each trial is independent; they tell us that they are independent. The probability of success in each trial is constant. We have a 12% success rate for each new person who comes through the line.

Now, the reason why this is not a binomial random variable is that we do not have a finite number of trials here. We're going to keep performing trials; we're going to keep serving people in the line until we get an SUV. So, what we have over here when they say find the probability that Amelia registers more than four vehicles before she registers an SUV is that this is the probability that V is greater than four.

I encourage you, like always, to pause this video and see if you can work through it. We’ll assume that she's just not going to leave her, I guess, her desk or whatever the things are being registered; she's not going to leave the counter until someone shows up registering an SUV. So, we'll just keep looking at people, I guess we could say, over multiple days forever. She'll work for an infinite number of years just for the sake of this problem until an SUV actually shows up. So try to figure this out.

Now, I'm assuming you've had a go, and some of you might say, "Well, isn't this going to be equal to the probability that V is equal to 5 plus the probability that V is equal to 6 plus the probability that V is equal to 7?" And it just goes on and on and on forever. This is actually true.

You might wonder, "Well, how do I calculate this?" I’m just summing up an infinite number of things. Now, the key realization here is that one way to think about the probability that V is greater than four is that this is the same thing as the probability that V is not less than or equal to four. These two things are equivalent.

So what's the probability that V is not less than or equal to four? This might be a slightly easier thing for you to calculate. Once again, pause the video and see if you can figure it out.

Well, what's the probability that V is not less than or equal to four? That's the same thing as the probability of the first four customers, or first four, I guess, people—first four, I'll say, customers or I'll say first four cars—not being SUVs.

So this one is feeling pretty straightforward. What's the probability that for each customer she goes to, they're not an SUV? Well, that's one minus 12 percent, or 88 percent, or 0.88. If we want to know the probability that the first four cars are not SUVs, well, that's 0.88 to the fourth power.

So that's all we have to calculate. Let’s get our calculator out. I'm going to get, whoops, I'm going to get 0.88 and I'm going to raise it to the fourth power and I get—and I'm just going to round it to the nearest, let's see, do they tell me to round it? Okay, I'll just round it to the nearest, I guess, well, hundredth.

I'll just write it as 0.5997. This is equal to or approximately equal to 0.5997. If you wanted to write this as a percentage, it would be approximately fifty-nine point nine seven percent. So, a little bit better than half—a 50% shot; a little less than a two-thirds shot—that she is going to have to see more than four customers until she sees an SUV.

More Articles

View All
Robinhood REVEALS Their Sneaky Business Model... (Robinhood IPO Filing)
Well, a couple of weeks ago, the commission-free trading app Robinhood submitted their S1 filing to the SEC, which is the initial registration form for new securities based in the US. What this means is that yes, Robinhood is gearing up for their IPO, whi…
Time Is But a Stubborn Illusion - Sneak Peek | Genius
What is time? A deceptively simple question, yet it is the key to understanding relativity. It is sort of the reason my hair is going gray. [laughter] When we describe motion, we do so as a function of time: 10 meters per second, 100 miles per hour. But t…
2015 AP Chemistry free response 6 | Studying for the AP Chemistry exam? | Chemistry | Khan Academy
A student learns that ionic compounds have significant covalent character when a cation has a polarizing effect on a large anion. So what are they talking about? So if I have a cation, so this is my cation, and then this is my large anion, my large anion…
5 Things to Know About Virunga | Explorer
[Music] Veranga is Africa’s oldest and largest national park. It’s an enormous area, 3,000 square miles of protected space. But perhaps most importantly, it’s home to most of the world’s critically endangered mountain gorilla. Barunga is a UNESCO World He…
Sal's back to school 2021 message
Hi everyone, Sal Khan here from Khan Academy. We’re entering into yet another back to school, but this is a back to school that’s very unusual compared to all others. We hope that we’re finally going to get to some level of normalcy as we see the light a…
How To Become A Millionaire: Index Fund Investing For Beginners
What’s up you guys, it’s Graham here. So let’s cover one of my favorite ways to invest ever, besides real estate. I would even go so far as to say that this is the best, safest, and easiest long-term investment strategy out there for most people. Also, th…