yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cumulative geometric probability (greater than a value) | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Amelia registers vehicles for the Department of Transportation. Sports utility vehicles, also known as SUVs, make up 12% of the vehicles she registers. Let V be the number of vehicles Amelia registers in a day until she first registers an SUV. Assume that the type of each vehicle is independent.

Find the probability that Amelia registers more than four vehicles before she registers an SUV.

So, let's just first think about what this random variable V is. It's the number of vehicles Amelia registers in a day until she registers an SUV. For example, if the first person who walks in the line or through the door has an SUV and they're trying to register it, then V would be equal to one. If the first person isn't an SUV, but the second person is, then V would be equal to two, and so forth and so on.

This right over here is a classic geometric random variable. We have a very clear success metric for each trial: Do we have an SUV or not? Each trial is independent; they tell us that they are independent. The probability of success in each trial is constant. We have a 12% success rate for each new person who comes through the line.

Now, the reason why this is not a binomial random variable is that we do not have a finite number of trials here. We're going to keep performing trials; we're going to keep serving people in the line until we get an SUV. So, what we have over here when they say find the probability that Amelia registers more than four vehicles before she registers an SUV is that this is the probability that V is greater than four.

I encourage you, like always, to pause this video and see if you can work through it. We’ll assume that she's just not going to leave her, I guess, her desk or whatever the things are being registered; she's not going to leave the counter until someone shows up registering an SUV. So, we'll just keep looking at people, I guess we could say, over multiple days forever. She'll work for an infinite number of years just for the sake of this problem until an SUV actually shows up. So try to figure this out.

Now, I'm assuming you've had a go, and some of you might say, "Well, isn't this going to be equal to the probability that V is equal to 5 plus the probability that V is equal to 6 plus the probability that V is equal to 7?" And it just goes on and on and on forever. This is actually true.

You might wonder, "Well, how do I calculate this?" I’m just summing up an infinite number of things. Now, the key realization here is that one way to think about the probability that V is greater than four is that this is the same thing as the probability that V is not less than or equal to four. These two things are equivalent.

So what's the probability that V is not less than or equal to four? This might be a slightly easier thing for you to calculate. Once again, pause the video and see if you can figure it out.

Well, what's the probability that V is not less than or equal to four? That's the same thing as the probability of the first four customers, or first four, I guess, people—first four, I'll say, customers or I'll say first four cars—not being SUVs.

So this one is feeling pretty straightforward. What's the probability that for each customer she goes to, they're not an SUV? Well, that's one minus 12 percent, or 88 percent, or 0.88. If we want to know the probability that the first four cars are not SUVs, well, that's 0.88 to the fourth power.

So that's all we have to calculate. Let’s get our calculator out. I'm going to get, whoops, I'm going to get 0.88 and I'm going to raise it to the fourth power and I get—and I'm just going to round it to the nearest, let's see, do they tell me to round it? Okay, I'll just round it to the nearest, I guess, well, hundredth.

I'll just write it as 0.5997. This is equal to or approximately equal to 0.5997. If you wanted to write this as a percentage, it would be approximately fifty-nine point nine seven percent. So, a little bit better than half—a 50% shot; a little less than a two-thirds shot—that she is going to have to see more than four customers until she sees an SUV.

More Articles

View All
Ray Dalio Explains How the U.S. Economic Crisis is Unfolding.
So in either case, we’re going to have a debt problem, and the question is how quickly does it evolve. Uh, in the way that I described, world-famous investor Ray Dalio has been back in the news lately discussing his thoughts on the monster US debt proble…
Manifest Destiny | Period 5: 1844-1877 | AP US History | Khan Academy
This is a print showing San Francisco Harbor in 1848. There’s a little smattering of houses and a few boats in the water. It looks pretty peaceful, and it was. San Francisco only had about a thousand residents, and California had only newly become a U.S. …
The Rise of the Cali Drug Cartel | Narco Wars
[music playing] JIM SHEDD: Gilberto Rogriuez Orejuela and Miguel Rodriguez Orejuela were the heads of a cartel that was totally different than the other cartels. They looked at it more as a business to expand, and they were involved in the cost versus pr…
Rocket Bonfire Bullet Time Experiment - Smarter Every Day 65
Okay, so wine asked me if he could have a fire at my house, and I said yes. They showed up with a truck with speakers or subs or something, and then there’s kids like chopping stuff up with an axe, and they’re throwing stuff in a fire. I don’t know, I don…
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…
15 Signs You are the New Rich
When talking about rich people, you probably picture some old or wrinkly white man wearing a suit, sitting in a boardroom. Well, there is a new kind of rich individual that stays as far away as possible from this kind of identity. They don’t give an f abo…