yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding measures using rigid transformations


4m read
·Nov 11, 2024

We are told that triangle ABC, which is right over here, is reflected across line L. So it's reflected across the line L right over here to get to triangle A prime, B prime, C prime. Fair enough!

So based on that, they're going to ask us some questions, and I encourage you to pause this video and see if you can figure out the answers to these questions on your own before I work through them.

The first question they say is, well, what's A prime C prime? This is really, what's the length of segment A prime C prime? So they want the length of this right over here. How do we figure that out?

Well, the key realization here is a reflection is a rigid transformation. Rigid transformation, which is a very fancy word, but it's really just saying that it's a transformation where the length, the length between corresponding points don't change. If we're talking about a shape like a triangle, the angle measures won't change, the perimeter won't change, and the area won't change.

So we're going to use the fact that the length between corresponding points won't change. So the length between A prime and C prime is going to be the same as the length between A and C. So A prime C prime is going to be equal to AC, which is equal to, they tell us right over there, that's this corresponding side of the triangle that has a length of three.

So we answered the first question, and maybe that gave you a good clue. I encourage you to keep pausing the video when you feel like you can have a go at it.

All right, the next question is, what is the measure of angle B prime? So that's this angle right over here, and we're going to use the exact same property. The measure of angle B prime corresponds to angle B. It underwent a rigid transformation of a reflection.

This would also be true if we had a translation or if we had a rotation. So right over here, the measure of angle B prime would be the same as the measure of angle B. But what is that going to be equal to? Well, we can use the fact that if we call that measure, let's just call that x.

X plus 53 degrees, we'll do it all in degrees, plus 90 degrees, this right angle here. Well, the sum of the interior angles of a triangle adds up to 180 degrees. So what do we have? We could subtract, let's see, 53 plus 90 is x plus 143 degrees, is equal to 180 degrees.

And so, subtract 143 degrees from both sides, you get x is equal to, let's see, 180 minus 143 would be 37 degrees. So that is 37 degrees. If that's 37 degrees, then this is also going to be 37 degrees.

Next, they ask us, what is the area of triangle ABC? Well, it's going to have the same area as A prime B prime C prime.

So a couple of ways we could think about it. We could try to find the area of A prime B prime C prime based on the fact that we already know that this length is 3 and this is a right triangle. Or we can use the fact that this length right over here, 4, from A prime to B prime, is going to be the same thing as this length right over here from A to B, which is 4.

The area of this triangle, especially since this is a right triangle, is quite straightforward. It's the base times the height times one-half. So this area is going to be one-half times the base 4 times the height 3, which is equal to half of 12, which is equal to 6 square units.

Then last but not least, what's the perimeter of triangle A prime B prime C prime? Well, here we just use the Pythagorean theorem to figure out the length of this hypotenuse.

And we know that this is a length of three based on the whole rigid transformation and lengths are preserved. So you might immediately recognize that if you have a right triangle where one side is three and one other side is four, that the hypotenuse is five. Three, four, five triangles!

Or you can just use the Pythagorean theorem. You say three squared plus four squared is equal to the hypotenuse squared. Well, three squared plus four squared, that's nine plus sixteen. Twenty-five is equal to the hypotenuse squared.

And so the hypotenuse right over here will be equal to five. And so they're not asking us the length of the hypotenuse; they want to know the perimeter. So it's going to be four plus three plus five, which is equal to twelve.

The perimeter of either of those triangles, because it's just one's the image of the other under a rigid transformation, they're going to have the same perimeter, the same area. The perimeter of either of the triangles is twelve, the area of either of the triangles is six, and we're done.

More Articles

View All
Adding with integer chips | Integers: Addition and subtraction | 7th grade | Khan Academy
Let’s say I wanted to figure out what negative 2 plus negative 4 is equal to. There are a bunch of ways of thinking about them, but what we’re going to do in this video is think about it using something called integer chips. So, with integer chips, if I …
Life's Biggest Lessons
There’s nothing worse than a sleepless night. We’ve all been there, tossing and turning. You focus all your mental power on trying to fall asleep. With all your will, you force yourself to shut your eyes, turn your brain off, and pray to be whisked away i…
Hedonism: The Pursuit of Happiness
In 2012, Drake made a song titled “The Motto,” but what most people remember from it is “YOLO.” YOLO tells you to live in the moment, enjoy life you have today, and not worry too much about tomorrow, because at the end of the day, you only live once. Whil…
These Men Love Extraordinarily Dull Things | Short Film Showcase
We formed the Dolan’s Club a while back. We got tired of reading and hearing so much about people always trying to get a fancier car, a bigger house, uh, travel to more exotic places, and come home and tell everybody they go to Las Vegas and come back sai…
Jorge Paulo Lemann on building a more equitable future in Brazil | Homeroom with Sal
Support all of you in other ways with daily class schedules to kind of approximate keeping the learning going on during the closures. Webinars for teachers and parents, and also this home room is really just a way to stay connected, talk to interesting pe…
Stoic Solutions For Jealousy
When we have something we cherish, like a spouse or a friend or a certain status within a group, but we feel threatened of losing it, we experience resentment, which we call jealousy. So how can we deal with this? This video presents you stoic solutions f…