yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What do quadratic approximations look like


4m read
·Nov 11, 2024

In the last couple of videos, I talked about the local linearization of a function. In terms of graphs, there's a nice interpretation here. If you imagine the graph of a function and you want to approximate it near a specific point, you picture that point somewhere on the graph. It doesn't have to be there; it could choose to be kind of anywhere else along the graph.

But if you have some sort of point and you want to approximate the function near there, you can have another function whose graph is just a flat plane. Specifically, it's a plane that is tangent to your original graph at that point. That's kind of visually how you think about the local linearization.

What I'm going to start doing here in this next video, and in the ones following, is talking about quadratic approximations. Quadratic approximations take this to the next level. First, I'll show what they look like graphically, and then I'll show you what that actually means in formulas.

Graphically, instead of having a flat plane, you have a few more parameters to deal with. You can give yourself some kind of surface that hugs the graph a little bit more closely. It's still going to be simpler in terms of formulas; it can still be notably simpler than the original function. But this actually hugs it closely.

As we move around the point that it's approximating near, the way that it hugs can look pretty different. If you want to think graphically about what a quadratic approximation is, you can basically say if you slice this surface—this kind of ghostly white surface—in any direction, it'll look like a parabola of some kind.

Notice that, given that we're dealing in multiple dimensions, that can make things look pretty complicated. For example, if you slice it kind of in this direction, moving things about, if you look at it from this angle, it kind of looks like a concave up parabola. But from another direction, it kind of looks concave down.

All in all, you get a surface that actually has quite a bit of information carried within it. By hugging the graph very closely, this approximation is going to be even closer because, near the point where you're approximating, you can take a couple of steps away, and the approximation is still going to be very close to what the graph is. It's only when you step really far away from the original point that the approximation starts to deviate away from the graph itself.

This is going to be something that, although it takes more information to describe than a local linearization, gives us a much closer approximation. So a linear function, which you know, one that just draws a plane like this, in terms of actual functions, what this means is: I'll kind of write linear.

This is going to be some kind of function of X and Y. What it looks like is some kind of constant, which I'll say a, plus another constant times the variable X, plus another constant times the variable Y. This is sort of the basic form of linear functions.

Technically, this isn't linear. If one were going to be really pedantic, they would say that that's actually a line, because, strictly speaking, linear functions shouldn't have this constant term; it should be purely X's and Y's. But in the context of approximations, people usually call this the linear term.

So what does a quadratic term look like? A quadratic term is allowed to have all the same terms as that linear one. You can have a constant, you can have these two linear terms, BX and CY, and then you're allowed to have anything that has two variables multiplied into it.

So maybe I'll have D * X², and then you can also have something times XY. This is considered a quadratic term, which is a little bit weird at first because usually we think of quadratics as associated with that exponent 2. But really, it's just saying anytime you have two variables multiplied in.

Then we can add some other constant, say F * Y², where now we're multiplying two Y's into it. All of these guys are what you would call your quadratic terms—things that have either Xs, Y², or XY—anything that has two variables in it.

You can see this gives us a lot more control. Because previously, as we tweaked the constants A, B, and C, you're able to get yourself some control over all sorts of planes in space. If you choose the most optimal one, you'll get one that's tangent to your curve at the specific point. It kind of depends on where that point is; you'll get different planes, but they're all tangent.

What we're going to do in the next couple of videos is talk about how you tweak all of these six different constants so that you can get functions that really closely hug the curve. They're all going to depend on the original point because, as you move that point around, what it takes to hug the curve is going to be different.

It's going to have to do with partial differential information about your original function—the function whose graph this is. It’s going to look pretty similar to the local linearization case, just with added complexity. So we have to add a few more steps in there, and I'll see you next video talking about that.

More Articles

View All
How costs change when fixed and variable costs change | APⓇ Microeconomics | Khan Academy
In the last few videos, we were studying our watch factory, ABC Watch Factory. Based on some data, knowing what our fixed costs are, our labor units, our variable cost, our total cost, and then our total output, and that would be for different amounts of …
Worked example: Balancing a simple redox equation | Chemical reactions | AP Chemistry | Khan Academy
So what we have here is a redox reaction. Things are getting oxidized and reduced; that’s the name, redox. But we want to balance this redox reaction, and when we talk about balancing a redox reaction, we want to make sure we conserve mass and charge on b…
Real Life Money Puzzles | Teacher Resources | Financial Literacy | Khan Academy
We join this episode of real life money puzzles already in progress. “Hey, Lizette.” “Yeah, BR.” “So I’m trying to work out these two offer letters.” “I know, baby. I’m so proud of you! Everybody wants to work with my boyfriend.” “Hey, no, but seriously,…
Diode
The diode is our first semiconductor device, and it’s a really important one. Every other semiconductor is basically made from combinations of diodes. Here’s a picture of a diode that you can buy. This is just a small little glass package, and that distan…
Marques Brownlee on Building an Audience and Other Advice for Creators
All right Marques Brownlee, how’s it going? Good, how are you? Doing well! So I’m curious, I’ve followed your channel for a while, but I definitely did not follow it in the beginning when you were reviewing software on your laptop. You’ve been doing it …
Tech's Impact On Young Brains | America Inside Out with Katie Couric
As more young people like David pull up in their rooms with their devices, studies show a generation delaying adulthood. Fewer get driver’s licenses, have after-school jobs, or date. But most alarming, the suicide rate for girls ages 15 to 19 doubled betw…