yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What do quadratic approximations look like


4m read
·Nov 11, 2024

In the last couple of videos, I talked about the local linearization of a function. In terms of graphs, there's a nice interpretation here. If you imagine the graph of a function and you want to approximate it near a specific point, you picture that point somewhere on the graph. It doesn't have to be there; it could choose to be kind of anywhere else along the graph.

But if you have some sort of point and you want to approximate the function near there, you can have another function whose graph is just a flat plane. Specifically, it's a plane that is tangent to your original graph at that point. That's kind of visually how you think about the local linearization.

What I'm going to start doing here in this next video, and in the ones following, is talking about quadratic approximations. Quadratic approximations take this to the next level. First, I'll show what they look like graphically, and then I'll show you what that actually means in formulas.

Graphically, instead of having a flat plane, you have a few more parameters to deal with. You can give yourself some kind of surface that hugs the graph a little bit more closely. It's still going to be simpler in terms of formulas; it can still be notably simpler than the original function. But this actually hugs it closely.

As we move around the point that it's approximating near, the way that it hugs can look pretty different. If you want to think graphically about what a quadratic approximation is, you can basically say if you slice this surface—this kind of ghostly white surface—in any direction, it'll look like a parabola of some kind.

Notice that, given that we're dealing in multiple dimensions, that can make things look pretty complicated. For example, if you slice it kind of in this direction, moving things about, if you look at it from this angle, it kind of looks like a concave up parabola. But from another direction, it kind of looks concave down.

All in all, you get a surface that actually has quite a bit of information carried within it. By hugging the graph very closely, this approximation is going to be even closer because, near the point where you're approximating, you can take a couple of steps away, and the approximation is still going to be very close to what the graph is. It's only when you step really far away from the original point that the approximation starts to deviate away from the graph itself.

This is going to be something that, although it takes more information to describe than a local linearization, gives us a much closer approximation. So a linear function, which you know, one that just draws a plane like this, in terms of actual functions, what this means is: I'll kind of write linear.

This is going to be some kind of function of X and Y. What it looks like is some kind of constant, which I'll say a, plus another constant times the variable X, plus another constant times the variable Y. This is sort of the basic form of linear functions.

Technically, this isn't linear. If one were going to be really pedantic, they would say that that's actually a line, because, strictly speaking, linear functions shouldn't have this constant term; it should be purely X's and Y's. But in the context of approximations, people usually call this the linear term.

So what does a quadratic term look like? A quadratic term is allowed to have all the same terms as that linear one. You can have a constant, you can have these two linear terms, BX and CY, and then you're allowed to have anything that has two variables multiplied into it.

So maybe I'll have D * X², and then you can also have something times XY. This is considered a quadratic term, which is a little bit weird at first because usually we think of quadratics as associated with that exponent 2. But really, it's just saying anytime you have two variables multiplied in.

Then we can add some other constant, say F * Y², where now we're multiplying two Y's into it. All of these guys are what you would call your quadratic terms—things that have either Xs, Y², or XY—anything that has two variables in it.

You can see this gives us a lot more control. Because previously, as we tweaked the constants A, B, and C, you're able to get yourself some control over all sorts of planes in space. If you choose the most optimal one, you'll get one that's tangent to your curve at the specific point. It kind of depends on where that point is; you'll get different planes, but they're all tangent.

What we're going to do in the next couple of videos is talk about how you tweak all of these six different constants so that you can get functions that really closely hug the curve. They're all going to depend on the original point because, as you move that point around, what it takes to hug the curve is going to be different.

It's going to have to do with partial differential information about your original function—the function whose graph this is. It’s going to look pretty similar to the local linearization case, just with added complexity. So we have to add a few more steps in there, and I'll see you next video talking about that.

More Articles

View All
The Leap Year as Explained by Neil deGrasse Tyson | StarTalk
Lee: Piers, no, they don’t happen all the time. But neither do presidential elections. But people don’t freak out with it. Well, it’s a presidential election year. It’s rare—notes every four years. Chill out! We, on Earth, as we orbit the Sun, we know ho…
Mr. Freeman, part 64
Ooops! Uh… Close the door! Get all of the young children out of here, and put your hands where I can see them! Do it! Today I’m going to tell you about a joyful and pleasant pastime, a piece of pocket-size happiness for anyone, a path to pure pleasure th…
POLAR OBSESSION 360 | National Geographic
Eleven years ago was my first trip to Antarctica. I came down here to do a story about the behavior of the leopard seal. My name is Paul Nicklin; it’s my job as a photojournalist to capture the importance and the fragility of this place and bring this bac…
How to sell a $14,000,000 private jet!
[Music] So yeah [Music] Avatar and Global Express. Yes sir, it’s your 2005. What can I tell you? 13 million five hundred thousand. Are you doing this for a customer? No, no. We have a small jet at the moment. We have a little 35A. Uh, it’s really hunting …
My Tips for Dealing with Uncertainty Like What the U.S. is Facing Today
But what can the individual do? And just to summarize, what can the collective do to stop or slow the decline that clearly, you know, you can measure has occurred? First, be financially strong. Have a good income and balance sheet. Think about how many m…
12 CRAZIEST Screensavers!
Hey, Vsauce. Michael here, with a video inspired by Orange Pumpkin Seven, who asked me to cover cool screen savers. Now at first, I was like, screen savers? Modern monitors don’t even need them. But then I sleuthed around and realized what a great idea i…