yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What do quadratic approximations look like


4m read
·Nov 11, 2024

In the last couple of videos, I talked about the local linearization of a function. In terms of graphs, there's a nice interpretation here. If you imagine the graph of a function and you want to approximate it near a specific point, you picture that point somewhere on the graph. It doesn't have to be there; it could choose to be kind of anywhere else along the graph.

But if you have some sort of point and you want to approximate the function near there, you can have another function whose graph is just a flat plane. Specifically, it's a plane that is tangent to your original graph at that point. That's kind of visually how you think about the local linearization.

What I'm going to start doing here in this next video, and in the ones following, is talking about quadratic approximations. Quadratic approximations take this to the next level. First, I'll show what they look like graphically, and then I'll show you what that actually means in formulas.

Graphically, instead of having a flat plane, you have a few more parameters to deal with. You can give yourself some kind of surface that hugs the graph a little bit more closely. It's still going to be simpler in terms of formulas; it can still be notably simpler than the original function. But this actually hugs it closely.

As we move around the point that it's approximating near, the way that it hugs can look pretty different. If you want to think graphically about what a quadratic approximation is, you can basically say if you slice this surface—this kind of ghostly white surface—in any direction, it'll look like a parabola of some kind.

Notice that, given that we're dealing in multiple dimensions, that can make things look pretty complicated. For example, if you slice it kind of in this direction, moving things about, if you look at it from this angle, it kind of looks like a concave up parabola. But from another direction, it kind of looks concave down.

All in all, you get a surface that actually has quite a bit of information carried within it. By hugging the graph very closely, this approximation is going to be even closer because, near the point where you're approximating, you can take a couple of steps away, and the approximation is still going to be very close to what the graph is. It's only when you step really far away from the original point that the approximation starts to deviate away from the graph itself.

This is going to be something that, although it takes more information to describe than a local linearization, gives us a much closer approximation. So a linear function, which you know, one that just draws a plane like this, in terms of actual functions, what this means is: I'll kind of write linear.

This is going to be some kind of function of X and Y. What it looks like is some kind of constant, which I'll say a, plus another constant times the variable X, plus another constant times the variable Y. This is sort of the basic form of linear functions.

Technically, this isn't linear. If one were going to be really pedantic, they would say that that's actually a line, because, strictly speaking, linear functions shouldn't have this constant term; it should be purely X's and Y's. But in the context of approximations, people usually call this the linear term.

So what does a quadratic term look like? A quadratic term is allowed to have all the same terms as that linear one. You can have a constant, you can have these two linear terms, BX and CY, and then you're allowed to have anything that has two variables multiplied into it.

So maybe I'll have D * X², and then you can also have something times XY. This is considered a quadratic term, which is a little bit weird at first because usually we think of quadratics as associated with that exponent 2. But really, it's just saying anytime you have two variables multiplied in.

Then we can add some other constant, say F * Y², where now we're multiplying two Y's into it. All of these guys are what you would call your quadratic terms—things that have either Xs, Y², or XY—anything that has two variables in it.

You can see this gives us a lot more control. Because previously, as we tweaked the constants A, B, and C, you're able to get yourself some control over all sorts of planes in space. If you choose the most optimal one, you'll get one that's tangent to your curve at the specific point. It kind of depends on where that point is; you'll get different planes, but they're all tangent.

What we're going to do in the next couple of videos is talk about how you tweak all of these six different constants so that you can get functions that really closely hug the curve. They're all going to depend on the original point because, as you move that point around, what it takes to hug the curve is going to be different.

It's going to have to do with partial differential information about your original function—the function whose graph this is. It’s going to look pretty similar to the local linearization case, just with added complexity. So we have to add a few more steps in there, and I'll see you next video talking about that.

More Articles

View All
Can the US avoid the End of an Empire?
Is there a political solution in the US to avoid the end of Empire, or is it a function of physics? I think this is a big part of, like, Sax’s point of view that there’s a solution; we need to change these people. Or are there too many, call it, conflatin…
Power rule (with rewriting the expression) | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice taking derivatives with the power rule. So let’s say we need to take the derivative with respect to x of 1 over x. What is that going to be equal to? Pause this video and try to figure it out. So…
Introduction to plate tectonics | Middle school Earth and space science | Khan Academy
What if I told you that the Earth below you is moving? You’d probably say, “Of course it’s moving! We’re standing on a planet that’s spinning on its axis while revolving around the sun at about 107,000 kilometers per hour.” On top of that, our whole sola…
Andy Grammer JUMP Earth Day Performance | ourHOME | National Geographic
What if I jump? What if it works? What if I’m meant, meant to be more than patient, more than patient? I’m biting my tongue, holding my breath. I think it’s time we had a conversation, a real conversation. Here it go! Make a choice, make it loud. Home is…
Screams of the Falling | Brain Games
We’ve got a surprise in store for our competitors. Our cognitive challenges were missing one critical element of survival situations: stress. What you’re going to do is you’re going to go up the stairs and just follow the path over to that plank. God, ok…
Introduction to car buying | Car buying | Financial Literacy | Khan Academy
So, you’re looking to buy a car. So, I’ll at least tell you how I would approach buying a car. The first thing is thinking about what you can afford, and I would think about that before you even look at the types of cars you might want to buy. Because it …