yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Khan Academy Needs Your Help To Keep Going
Hi, Sal Khan here from Khan Academy. I’m just here to remind everyone that Khan Academy is a not-for-profit organization with the mission of providing a free, world-class education for anyone, anywhere. We can only do that work through philanthropic dona…
North Korea in 3D: See Rare Photos of People in the Secret State | Short Film Showcase
[Music] In early 2014, Choreo Studio invited Slovenian photographer Mathias Tan Church to undertake a 3D photography project in North Korea, inspired in part by the country’s own fondness for 3D photography to produce keepsake postcards and public art. Ac…
The Most Powerful Mindset for Success
There is a psychological trait that all successful people appear to have in common. It’s been cosigned by Bill Gates and NASA uses it as a criteria for selecting potential Systems Engineers. This concept is called the growth mindset, a term originally coi…
Lesson Planning with Khanmigo
This is Conmigo, an AI-powered guide designed to help all students learn. Kanmigo is not just for students; teachers can use Conmigo too by toggling from student mode to teacher mode. Once in teacher mode, Conmigo transforms into the teaching assistant yo…
Trapped in the icy waters of the Northwest Passage | Podcast | Overheard at National Geographic
Foreign, so look, I know we’re going to get into the whole journey, but let’s start with tell me about the moment on this journey when you felt the most scared. Okay, that’s a good one. [Laughter] Um, this is Mark Senate. He’s a long-time National Geogra…
The Waters of Slovenia | National Geographic
My connection to the sea started when I was little. I spent most of my summers at the sea, swimming. Ever since I was two and a half years old, I started swimming. I kept on developing a love for the water. The water, here, our skin is different from anyw…