yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Chip Rescues Agnes | Life Below Zero
My back here, it’s got coolant all over the ground. I was just wondering if you’re going to just double up and keep going or else, um, because we’re almost here. Finish the delivery. Finish the delivery. We’ll go deliver this thing, and we’ll come back h…
Deserts 101 | National Geographic
[Narrator] Wind whips over a barren wasteland. Vast nothingness as far as the eye can see, or so it may seem. Creatures peek out of burrows, scurry across the sand, and soar through the sky, revealing a landscape not as lifeless as it might first appear. …
Ask me anything with Sal Khan: March 24 | Homeroom with Sal
Hello everyone. It looks like we are live, and we’re getting better at starting on time. Thanks for joining us at our daily live stream at our new time that we started yesterday, now today at 12 Pacific through Eastern. Many people are joining from all ov…
The Second Great Awakening - part 2
In the last video, I started discussing the Second Great Awakening, which was this era of increased religious fervor, religious conversion, and religiously inspired social action that happened in the early 19th century of the United States’ history. So ap…
Millionaire Exposes The Jake Paul Financial Freedom Scam
What’s up you guys? It’s Graham here. So let me start by asking you three very important questions. Number one, have you ever dreamed of being a millionaire? Number two, have you ever wanted to be financially free? And most importantly, number three, have…
Dividing polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy
What we’re going to do in this video is get some practice dividing expressions. So, what do I mean by that? So let’s say that I have the expression 6X + 12, and I want to figure out what that divided by, maybe I’ll write this in a different color: divided…