yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Eutrophication and dead zones | Ecology | Khan Academy
We’re now going to talk about something called UT tropication. UT tropication comes from, or it’s derived from, the Greek for well-nourished, referring to “well,” and then “trophic” or “trophia,” referring to nourished or nourishment. You might think that…
Ray Dalio: Is Investing In China Dangerous?
So as you guys will have noticed, a lot of the discussions in the investing world and a lot of the content on this channel lately has been around China. We did that whole series on Alibaba and the Chinese regulatory crackdown, and now recently we’ve been …
What the Ice Gets, the Ice Keeps | Podcast | Overheard at National Geographic
Foreign large ice floors in the first months of 2022, Esther Horvath sailed through the frigid waters of the Weddell Sea off the coast of Antarctica. Esther’s a photographer, and she was documenting life aboard a research ship that can break through ice s…
Cooling Cities By Throwing Shade | Podcast | Overheard at National Geographic
It’s a hot breezy summer day in Los Angeles. I’m just recording the sounds of my neighborhood here in the Huntington Park neighborhood. You might see a woman named Eileen Garcia driving from tree to tree, trying to give them some much-needed relief from t…
How Wildlife Overcame South Georgia's Haunting Past — Ep. 5 | Wildlife: Resurrection Island
When this place was in full swing, a cloud of smoke covered the skies. 300 men toiled as thousands of whales lost their lives in Salieri. But who started this, and how did we get to the point of nearly exterminating the wildlife from this island? How is i…
Let’s Travel to The Most Extreme Place in The Universe
The universe is pretty big and very strange. Hundreds of billions of galaxies with sextillions of stars and planets, and in the middle of it all there is Earth, with you and us. But as enormous as the universe seems looking up, it seems to get even large…