yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Multivariable chain rule intuition
So, in the last video, I introduced this multi-variable chain rule, and here, I want to explain a loose intuition for why it’s true, why you would expect something like this to happen. The way you think about an expression like this, you have this multiv…
Close Call: Flipping Iceberg Nearly Crushes Explorers | Expedition Raw
Icebergs can be some of the most beautiful things in the world, but they can also be very dangerous. One of our team members, with a lot of experience in polar regions, tells me that there is an iceberg that looks pretty stable, so we should go and dive t…
What Color Is A Mirror?
Hey, Vsauce. Michael here. And today we are going to talk about color. (Green Green, Green Green). “Gold” on, let me just “Pink” this up. “Yellow?” “Michael, “Orange” you going to come to the concert this evening?” “I “Red” about that, there are going to …
Physical and chemical changes | Chemical reactions | High school chemistry | Khan Academy
So what we have are three different pictures of substances undergoing some type of change, and what we’re going to focus on in this video is classifying things as either being physical changes or chemical changes. You might have already thought about this…
The Crisis of Credit Visualized - HD
The crisis of credit visualized. What is the credit crisis? It’s a worldwide financial fiasco involving terms you’ve probably heard, like subprime mortgages, collateralized debt obligations, frozen credit markets, and credit default swaps. Who’s affected?…
2015 AP Chemistry free response 2 d e
The Lewis electron dot diagram for C2H4 is shown below. In the box on the left, in the box on the right, complete the Lewis electron dot diagram for C2H5O, or ethanol, by drawing in all of the electron pairs. As they said, this right over here, this is t…