yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Car payment calculation | | Car buying | Financial Literacy | Khan Academy
So let’s think a little bit about how you might likely pay for a car. Now, there’s really three ways to pay for a car. One, you might just have enough cash in your bank account and you could pay for it outright. Another model is that you could rent the ca…
Homeroom with Sal & US Sec. of Education, Dr. Miguel Cardona - Thursday, April 29
Hi everyone, Sal Khan here from Khan Academy. Welcome to the Homeroom live stream. We’re very excited to have a conversation with U.S. Secretary of Education Miguel Cardona today. But before we jump into that conversation, I will remind you a few of my ty…
The Moons of Mars Explained -- Phobos & Deimos MM#2
The moons of Mars explained. Mars has two moons, Phobos and Deimos. They are really tiny. How tiny? Compared to Mars or our own moon, pretty tiny. Although, tiny is a matter of opinion. Their surface area is up close to some of the smallest states on Eart…
The Entire History of Space, I guess
[Music] Earth and civilization as we know it has come a long way in the past 200,000 years and has experienced a multitude of changes. In that time, the human species has only existed for a mere 0.0015% of the immense 13.7 billion year age of the universe…
THE ART OF SLOW LIVING: SAVORING LIFE ONE MOMENT AT A TIME | STOICISM
In our relentless quest for more and faster, it’s astonishing how much of life’s profound beauty and depth we sacrifice. The Stoics believe that to live fully, one must not just bear life’s challenges but also cherish them. Each obstacle is a teacher, and…
Fishing Tips: How to Rig a Harpoon | Wicked Tuna: Outer Banks
[Applause] [Music] Captain TJ out of the Hot Tuna, and today I’m going to show you how we like to rig our harpoons and board the Hot Tuna. So what we have here is an 8ft scourge of the sea harpoon, our Lily dart on the end here. What I like to do is tak…