yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Khan Academy Ed Talks with Olav Schewe - Tuesday, June 1
Hello! Welcome to Ed Talks with Khan Academy. We are excited to have you here as we talk to people who are influential in the education space. Today, we’re talking to Olive Chewie, who has a book coming out that we’re looking forward to talking to about l…
Global winds and currents | Middle school Earth and space science | Khan Academy
One of my favorite things to do is go camping. For me, there’s nothing better than getting outside, breathing in some fresh air, and taking a swim in my favorite river. Have you ever jumped into a river and felt that the deeper, cooler water closer to you…
Why The War on Drugs Is a Huge Failure
Over 40 years ago, US President Richard Nixon declared drug abuse public enemy number one, starting an unprecedented global campaign, the War on Drugs. Today, the numbers are in. The War on Drugs is a huge failure, with devastating unintended consequences…
JEFF VS. ADAM: Nerd Wars!
It’s a nerd force! Oh good, what style are we doing it now? Alright, so welcome to Nerds War. There’s a very special Nerds War. We didn’t prep because I sliced my finger—[ __ ] oh um, so we’re doing a Nerds War extreme! Adam vs. Jeff! Said, I’m playing A…
Multiplying monomials | Algebra I | Khan Academy
All right, in this video we’re going to be multiplying monomials together. Let me give you an example of a monomial: 4 x squared. That’s a monomial. Now, why? Well, mono means one, which refers to the number of terms. So this 4x squared, this is all one t…
See the Brooklyn Bridge Model Made From 5,000 Plastic Bottles | National Geographic
[Music] I want people to feel emotion, because when art, until the moment of caring, it allows people to connect to an issue that they are otherwise not sensitive to. It allows them to change their inner attitude, because who you are on the inside is how …