yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
1998 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Morning! [Applause] Good morning, I’m Warren Buffett, chairman of Berkshire, and this is my partner. This hyperactivity fellow over here is Charlie Munger. We’ll do this as we’ve done in the past, following the Saddam Hussein School of Manageme…
Veritasium & Team Record Gold Invade London
Hey YouTube! I have a really important announcement to make. It’s not that you’re going to shave your beard, is it? No, it is way bigger than that! Roll sound! I’m here at the Olympic cauldron in Vancouver. As you know, I’ve been traveling for a long tim…
A Dangerous Night In L.A. | LA 92
[sirens] DISPATCHER 1: There’s a reported structure fire for [inaudible] 64. DISPATCHER 2: We think it’s a pretty heavy flack on Adams above Holbart. DISPATCHER 3: –checking out. We’ve got bottles through the window. DISPATCHER 2: [inaudible] in that …
LEGO TACO! And Other Great Images -- IMG! Episode #47
Do you consider yourself a fan of dogs? Or cloud ice cream? Well, it’s episode 47 of IMG! This is a mirror and this is clear glass. A broccoli tree house and, with the right outline, Europe can be a dragon. In the early 1900s, Arthur S. Mole and John D. …
how to ACTUALLY stop wasting time on social media
Another day went by, and you spent your whole day scrolling on social media while laying on your bed. You might look back and think, “What did I do today?” Most of us have projects and some activities that we would like to do someday, but for some reason,…
How Your Toothbrush Became a Part of the Plastic Crisis | National Geographic
(Tapping) [Narrator] Hopefully you know this already but … that’s a toothbrush. So are these. And the one thing they have in common: they’re all plastic. But here’s something you might not know. This routine has been around for a millennia. And back then…