yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Physical and chemical changes | Chemical reactions | High school chemistry | Khan Academy
So what we have are three different pictures of substances undergoing some type of change, and what we’re going to focus on in this video is classifying things as either being physical changes or chemical changes. You might have already thought about this…
Stoicism: Conquer Your Resolutions
Thank you. What is your New Year’s resolution? For some of us, it’s to be more productive; for others, it’s to lose weight or simply be healthier. For you, it might be to spend more time with friends and family, or finally write that book that you’ve been…
15 Things To Do Before 11AM To Win the Day
Hey there, Alexir! Now, tell me, how many times have you said, “I wish I had more time in the day”? You’ve got about 16 hours, 960 active minutes, in your day. Are you using that time wisely? Really getting the most out of it? Because if you are, then by …
m͏̺͓̲̥̪í͇͔̠ś̷͎̹̲̻̻̘̝t̞̖͍͚̤k̥̞à̸͕̮͍͉̹̰͚̰ẹ̶̢̪s͏̨͈̙̹̜͚̲ ̛̬͓͟
Hey, Vsauce. Michael here. The title of this video is misspelled in honour of mistakes. Mistakes are everywhere; they surround us like air. To err is human. Faults, flaws, faux pas, fumbles and fallacies are as much a part of who we are today as the stuff…
An overview of the Crusades (part 2)
Where we left off in the last video, we had seen what would eventually be called the First Crusades. From a European point of view, it seemed successful; they were able to take back much of the Holy Land from Muslim rule. The Byzantine Empire was able to …
The World War of the Ants – The Army Ant
Some groups just don’t get along. Every day, billions of soldiers fight a merciless war on thousands of fronts, and it’s been going on for over 100 million years. The World War of the Ants. [Music] Ants are ancient beings that arose around 160 million y…