yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Why You Should Put YOUR MASK On First (My Brain Without Oxygen) - Smarter Every Day 157
All right, I’ll make it super fast. It’s me, Destin. Welcome back to SmarterEveryDay. When you’re in a jet, if the cabin depressurizes, they drop this little mask out of the top. What happens if you’re in a depressurized cabin and you’re up above 15,000 f…
The Science of Thinking
For most of us, thinking is at least somewhat unpleasant. We try to avoid it, where possible. For example: I asked these guys how long does it take for the earth to go around the Sun. What do you reckon, cuz? Isn’t it 24 hours? Obviously a day, yes. O…
Peter Lynch: Why You Should Always Ignore Economic Predictions When Investing
You don’t have to go far to find dire economic predictions. Just turn on your TV or open YouTube, and you will see predictions about what will cause the next financial crisis, economic collapse, or great depression. Whether it’s caused by rising interest …
AVOID THESE 5 MONEY MISTAKES IN 5 MINUTES
What’s up, you guys? It’s Random here. So let’s be honest with ourselves. We all want to get better with our money, whether it’s making more money or growing our wealth. It’s all about the small improvements we make along the way. Unfortunately, most peop…
Dogs: (Prehistoric) Man's Best Friend | National Geographic
There are more dog burials in prehistory than there are burials of any other animals, including cats, for example, or horses. Dogs seem to have a very special place in human communities in the past. As soon as we see in the archaeological record skeletal …
Investigating Rock Carvings | Atlantis Rising
Author George’s Diaz Montek Sano has been researching this area for years, and he’s convinced that some Atlantan refugees fled inland and built shrines to memorialize the lost city. Deciphering the shrine would help Giorgos prove his theory. “No sir, a r…