yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: range of solution curve from slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

If the initial condition is (0, 6), what is the range of the solution curve ( Y = F(x) ) for ( x \geq 0 )?

So, we have a slope field here for a differential equation, and we're saying, okay, if we have a solution where the initial condition is (0, 6), so (0, 6) is part of that solution.

Let's see (0, 6). So this is part of the solution, and we want to know the range of the solution curve. You can eyeball a little bit by looking at the slope field.

So, as ( x ), remember ( x ) is going to be greater than or equal to zero, so it's going to include this point right over here. As ( x ) increases, you can tell from the slope, okay, ( y ) is going to decrease, but it's going to keep decreasing at a slower and slower rate.

It looks like it's asymptoting towards the line ( y = 4 ). So, it's going to get really, as ( x ) gets larger and larger, it's going to get infinitely close to ( y = 4 ) but it's not quite going to get there.

So the range, the ( y ) values that this is going to take on, ( y ) is going to be greater than 4. It's not ever going to be equal to 4. So I'll do, it's going to be greater than 4. That's going to be the bottom end of my range, and at the top end of my range, I will be equal to 6.

Six is the largest value that I am going to take on. Another way I could have written this is ( 4 < y \leq 6 ). Either way, this is a way of describing the range, the ( y ) values that the solution will take on for ( x ) being greater than or equal to zero.

If they said for all ( x )'s, well then you might have been able to go back this way and keep going, but they're saying the range of the solution curve for ( x ) is greater than or equal to zero.

So we won't consider those values of ( x ) less than zero. So there you go, the curve would look something like that, and you can see the highest value it takes on is six, and it actually does take on that value because we're including ( x ) equaling zero, and then it keeps going down, approaching 4, getting very, very close to 4 but never quite equaling 4.

More Articles

View All
Warm up to the second partial derivative test
So, in single variable calculus, if you have a function f of x and you want to find the maximum or the minimum of this function, what you do is you find its derivative and you set that equal to zero. Graphically, this has the interpretation that, you know…
Michael Burry's Latest Warning For The 2022 Recession
It’s no secret that in 2022 the stock market hasn’t been a particularly nice place to be. The S&amp;P 500 is down about 20%, the NASDAQ is down 27%, and from everything we’ve seen in the news lately, it doesn’t look like it’s getting much better anytime s…
Can You Upload Your Mind & Live Forever?
The desire to be free from the limits of the human experience is as old as our first stories. We exist in an endless universe, only bound by the laws of physics, and yet our consciousness is trapped in mortal machines made of meat. With the breathtaking e…
LearnStorm Growth Mindset: The Truth About Your Brain
So this is your brain. Say hi! Okay, it’s a representation of your brain. Brains don’t have hands; they have lobes and other structures, which we’ll get to. But I want to talk to you about your brain. You see, your brain is capable of incredible things. …
Creating objective summaries | Reading | Khan Academy
Hello readers. Today I want to talk about objective summaries by way of introducing you to the character of Joe Friday, a fictional cop from an old radio show from the 50s called Dragnet. The show had this iconic theme, and it went like this: Friday was a…
Artificial Intelligence in Space | StarTalk
Actually, this is the time of the show where we go to Cosmic Queries. Let’s start talking Cosmic Queries. Chuck, oh, he’s got him in his pocket! I have them! Look at that! That was so awkward. That was very clumsy, Chu. That was so clumsy! Okay, but I ho…