yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying inverse functions by composition | Mathematics III | High School Math | Khan Academy


4m read
·Nov 11, 2024

  • [Voiceover] Let's say that f of x is equal to x plus 7 to the third power, minus one. And let's say that g of x is equal to the cube root of x plus one, the cube root of x plus one, minus seven.

Now, what I wanna do now is evaluate f of g of x. I wanna evaluate f of g of x, and I also wanna evaluate g of f of x, g of f of x, and see what I get. I encourage you, like always, pause the video and try it out.

Let's first evaluate f of g of x. That means, g of x, this expression is going to be our input. So, everywhere we see an x in the definition for f of x, we would replace it with all of g of x. So, f of g of x is going to be equal to, well, I see an x right over there so I'll write all of g of x there.

So that's the cube root of x plus one minus seven, and then I have plus seven, plus seven to the third power, minus one. Notice, whenever I saw the x, since I'm taking f of g of x, I replace it with what g of x is, so that is the cube root of x plus one minus seven.

Alright, I'll see if we can simplify this. Well, we have a minus seven plus seven so that simplifies nicely. So, this just becomes, this is equal to, I can do a neutral color now, this is equal to the cube root of x plus one to the third power, minus one.

Well, if I take the cube root of x plus one and then I raise it to the third power, well, that's just gonna give me x plus one. So, this part just simplifies to x plus one, and then I subtract one, so it all simplified out to just being equal to x.

So we're just left with an x. So, f of g of x is just x. So now, let's try what g of f of x is. So, g of f of x is going to be equal to, I'll do it right over here, this is going to be equal to the cube root of actually, let me write it out.

Wherever I see an x, I can write f of x instead. I didn't do it that last time, I went directly and replaced it with the definition of f of x but just to make it clear what I'm doing, everywhere I'm seeing an x, I replace it with an f of x.

So, the cube root of f of x plus one, minus seven. Well, that's going to be equal to the cube root of cube root of f of x, which is all of this business over here, so that is x plus seven to the third power, minus one, and then we add one and we add one, and then we subtract the seven. Lucky for us, subtracting one and adding one, those cancel out.

Next, we're gonna take the cube root of x plus seven to the third power. Well, the cube root of x plus seven to the third power is just going to be x plus seven. So, this is going to be x plus seven, for all of this business simplifies to x plus seven, and then we do subtract seven and these two cancel out, or they negate each other and we are just left with x.

So, we see something very interesting. f of g of x is just x and g of f of x is x. So, in this case, if we start with an x, if we start with an x, we input it into the function g and we get g of x.

We get g of x and then we input that into the function f. Then we input that into the function f, f of g of x gets us back to x. It gets us back to x. So we kind of did a round-trip.

And the same thing is happening over here. If I put x into f of x... I'm sorry, if I put x into the function f, and I get f of x, the output is f of x, and then I input that into g, into the function g, into the function g, once again I do this round-trip and I get back to x.

Another way to think about it, these are both composite functions. One way to think about it is, if these are the set of all possible inputs into either of these composite functions, and then these are the outputs, so you're starting with an x. I'll do this case first, so, g is a mapping.

Let me write down, so, g is going to be a mapping from x to g of x. So, this is what g is doing. The function g maps from x to some value, g of x and then if you'd apply f to this value right over here, if you apply f to this value, the g of x, you get all the way back to x.

So, that is f of g of x. And vice versa. If you start with x and apply f of x first, so, if you start with f, if you apply f of x first, let me do that, so, if you apply f of x first, you see you get to this value.

So, that is f of x, so you applied the function f when you apply the function g to that. You apply the function g to that, you get back. So this g of f of x, I should say, or g of f, we're applying the function g to the value f of x, and so, since we get a round-trip either way, we know that the functions g and f are inverses of each other.

In fact, we can write that f of x is equal to the inverse of g of x, the inverse of g of x, and vice versa. g of x is equal to the inverse of f of x, the inverse of f of x. Hope you enjoyed that.

More Articles

View All
Fur Seals Overcome Extinction On ‘Resurrection Island’ – Ep. 1 | Wildlife: Resurrection Island
If you’re a first-year pup living on the northern shores of the island of South Georgia, make sure you enjoy yourself because cuteness doesn’t last long. If you happen to be an adult male here, you’re down to just three options: give in, give up, or give …
Will We Ever Visit Other Stars?
Hey, Vsauce. Michael here. I’ve been watching Bravest Warriors on Cartoon Hangover lately. It’s great, it was created by Pendleton Ward, and in the show, teenagers zip around the universe visiting star systems and planets, and here is my question: When wi…
Gee Pole | Yukon River Run
Mus: “Hy mush, mus! Oh, good job, hus! Job break! Break! This a nice trail right here. Hopefully it’ll stay this way, but I think we’re going to get into some rust country and a portage up there. We want to get up to our cabin. Laur and I want to get up t…
Income elasticity of demand | APⓇ Microeconomics | Khan Academy
In previous videos, we have talked about the idea of price elasticity. It might have been price elasticity of demand or price elasticity of supply, but in both situations, we were talking about our percent change in quantity over our percent change in pri…
I was TERRIFIED to film this - how to take action!
What’s up you guys? It’s Graham here. So, I’m making this video as a part two to the video I uploaded about two weeks ago about how to get over your fear. On that video, I received this amazing comment from the user named Tristan. Tristan explained that …
Water Is Amazing -- World Water Day!
Hey, Vsauce. Michael here. And today, we’re going to talk about water. Because today is World Water Day. A day about raising awareness of the fact that, even though, here on Earth, there is enough clean, safe, drinking water for everybody to have enough, …