yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Are the Northern Lights dangerous? - Fabio Pacucci


3m read
·Nov 8, 2024

On September 1st, 1859, miners following the Colorado gold rush woke up to another sunny day. Or so they thought. To their surprise, they soon discovered it was actually 1 am; and the sky wasn’t lit by the Sun, but rather by brilliant drapes of light. The blazing glow could be seen as far as the Caribbean, leading people in many regions to believe that nearby cities had caught fire. But the true cause of what would come to be known as the Carrington Event was a solar storm—the largest in recorded history.

Solar storms are one of many astrophysical phenomena caused by magnetic fields. These fields are generated by movements of electrically charged particles like protons and electrons. For example, Earth’s magnetic field is generated by charged molten metals circulating in the planet's outer core. Similarly, the Sun’s magnetic field is generated by large convective movements in the plasma that composes the star. As this plasma slowly swirls, it creates areas of intense magnetic activity called sunspots.

The magnetic fields that form near these regions often become twisted and strained. And when they’re stretched too far, they snap into simpler configurations, releasing energy that launches plasma from the Sun’s surface. These explosions are known as coronal mass ejections. The plasma—mostly made of protons and electrons—accelerates rapidly, quickly reaching thousands of kilometers per second. A typical coronal mass ejection covers the distance between the Sun and the Earth in just a couple of days, flowing along the magnetic field that permeates the solar system.

And those that cross the Earth’s path are drawn to its magnetic field lines, falling into the atmosphere around the planet’s magnetic poles. This tidal wave of high-energy particles excites atmospheric atoms such as oxygen and nitrogen, causing them to rapidly shed photons at various energy levels. The result is a magnificent light show we know as the auroras. And while this phenomenon is usually only visible near the Earth’s poles, strong solar storms can bring in enough high energy particles to light up large stretches of the sky.

The magnetic fields in our solar system are nothing compared to those found in deep space. Some neutron stars generate fields 100 billion times stronger than those found in sunspots. And the magnetic fields around supermassive black holes expel jets of gas that extend for thousands of light years. However, on Earth, even weak solar storms can be surprisingly dangerous. While the storms that reach us are generally harmless to humans, the high-energy particles falling into the atmosphere create secondary magnetic fields, which in turn generate rogue currents that short-circuit electrical equipment.

During the Carrington Event, the only widespread electrical technology was the telegraph. But since then, we've only become more dependent on electrical systems. In 1921, another powerful solar storm caused telephones and telegraph equipment around the globe to combust. In New York, the entire railway system was shut down and fires broke out in the central control building. Comparatively weak storms in 1989 and 2003 turned off regions of the Canadian power grid and damaged multiple satellites.

If we were hit by a storm as strong as the Carrington Event today, it could devastate our interconnected, electrified planet. Fortunately, we're not defenseless. After centuries of observing sunspots, researchers have learned the Sun’s usual magnetic activity follows an 11-year cycle, giving us a window into when solar storms are most likely to occur. And as our ability to forecast space weather has improved, so have our mitigation measures. Power grids can be shut off in advance of a solar storm, while capacitors can be installed to absorb the sudden influx of energy.

Many modern satellites and spacecraft are equipped with special shielding to absorb the impact of a solar storm. But even with these safeguards, it’s hard to say how our technology will fare during the next major event. It’s possible we’ll be left with only the aurora overhead to light the path forward.

More Articles

View All
The 3 Pillars Of Stoicism Explained
If we look at Stoicism as a philosophical system, we can divide it in three pillars: Ethics, Logic and Physics. Some scholars arrange these aspects of Stoicism in the form of an egg. The yolk represents the Physics; the white, the Ethics; and the shell th…
Competition, predation, and mutualism | Middle school biology | Khan Academy
All across ecosystems, we know that organisms interact in specific ways, and scientists use special words to describe these types of interaction: competition, predation, and mutualism. So let’s first talk about competition, which we have already talked ab…
More Questions Than Answers | LA 92
I think it is devastating to the image of this city and especially to our police department. JOHN MACK: It’s very apparent that some– not all, but some– of those officers are clearly out of control. And they have to ultimately be willing to take a good, …
The 6 BEST Investments To 10X In 2022
What’s up, Grandma’s guys? Here, so in the last year, the stock market is up another 30 percent, Ethereum is up four hundred percent, AMC is up a thousand percent, and Dogecoin is up a whopping 3821. Now, even though I cannot promise that I’ll be able to…
How to Learn Faster with the Feynman Technique (Example Included)
There’s this pretty well known quote that gets thrown around a lot, and it’s often attributed to Albert Einstein, and it goes, “Now whether or not Einstein was the person who actually said this, let’s be real he probably wasn’t.” It’s still really insight…
COLD HARD SCIENCE.The Physics of Skating on Ice (With SlowMo) - Smarter Every Day 110
Hey, it’s me Destin. Welcome back to Smarter Every Day. So in the Olympics, the most athletic team always wins, right? No. It’s actually more complicated than that because there are physical objects in the Olympics. Now the team that is able to manipulate…