yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using arithmetic sequences formulas | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

All right, we're told that the arithmetic sequence ( a_i ) is defined by the formula where the ( i )-th term in the sequence is going to be ( 4 + 3 \cdot (i - 1) ). What is ( a_{20} )?

So, ( a_{20} ) is the 20th term in the sequence, and I encourage you to pause the video and figure out what is the 20th term. Well, we can just think about it like this: ( a_{20} ), we just use this definition of the ( i )-th term. Everywhere we see an ( i ), we would put a 20 in.

So, it's going to be ( 4 + 3 \cdot 20 - 1 ). So once again, just to be clear, ( a_{20} ), where instead of ( a_i ), wherever we saw an ( i ), we put a 20. Now we can just compute what this is going to be equal to.

This is going to be equal to ( 4 + 3 \cdot 20 - 1 ).

Let's see, ( 3 \cdot 20 ) is 60. So, this is ( 4 + 60 - 1 ), which equals ( 4 + 60 - 1 = 63 ). Thus, the 20th term in this arithmetic sequence is going to be 63.

Let's do another one of these. Here, they've told us the arithmetic sequence ( a_i ) is defined by the formula ( a_1 ). They give us the first term and say every other term, so ( a_i ), they're defining it in terms of the previous term.

So, ( a_i ) is going to be ( a_{i - 1} - 2 ). This is actually a recursive definition of our arithmetic sequence. Let's see what we can make of this.

So, ( a_5 ) is going to be equal to... we'll use this second line right here. ( a_5 ) is going to be equal to ( a_4 - 2 ). Well, we don't know what ( a_4 ) is just yet, so let's try to figure that out.

So, we could say that ( a_4 ) is equal to... well, if we use the second line again, it's going to be ( a_{3} - 2 ). We still don't know what ( a_{3} ) is. I'll keep switching colors because it looks nice.

( a_3 ) is going to be equal to ( a_{2} - 2 ). We still don't know what ( a_{2} ) is. So we could write ( a_2 = a_{1} - 2 ). Now, luckily, we know what ( a_1 ) is. ( a_1 ) is -7.

So if ( a_1 ) is -7, then ( a_2 = -7 - 2 ), which is equal to -9. Well, that starts helping us out because if ( a_2 ) is -9, then ( a_3 = -9 - 2 ), which is equal to -11.

Well, now that we know that ( a_3 = -11 ), we can figure out ( a_4 = -11 - 2 ), which is equal to -13.

And we're almost there! We know ( a_4 ). The fourth term in this arithmetic sequence is -13, so we can now... if this is -13, ( a_5 ) is going to be ( a_4 ), which is -13 - 2, which is equal to -15.

So the fifth term in the sequence is -15, and we're all done.

More Articles

View All
3 Reasons Why Nuclear Energy Is Terrible! 2/3
Three reasons why we should stop using nuclear energy. One. Nuclear weapons proliferation. Nuclear technology made a violent entrance onto the world stage just one year after the world’s first-ever nuclear test explosion in 1944. Two large cities were de…
Meet the 18-year-old making $100,000/mo
How do you find a winning product nobody wants? TV show strategy? You know, I mean, I’ll give a little bit of my secret sauce. Like, I haven’t really taught many people this. This is a big one, guys! Like, this is a big one. But I’m serious! Like, go to …
President Obama and Climate Change | Before the Flood
Good to see you. Thank you so much. You doing all right? Absolutely all right. Come on, the Paris Agreement ended up being a historic agreement not because it gets us to where we need to be eventually, but for the first time locking in all countries into …
Representing points in 3d | Multivariable calculus | Khan Academy
So, a lot of the ways that we represent multivariable functions assume that you’re fluent with understanding how to represent points in three dimensions and also how to represent vectors in three dimensions. So, I thought I’d make a little video here to …
Graphical limit at asymptotic discontinuity
All right, we have a graph of ( y ) is equal to ( f(x) ), and we want to figure out what is the limit of ( f(x) ) as ( x ) approaches negative three. If we just look at ( x = -3 ), it’s really hard to see, at least based on how this graph looks, what ( f(…
Teaching Electives with Khanmigo
Hi, I’m Michelle, a professional learning specialist here at Khan Academy and a former classroom teacher just like you. Meet Kigo, your AI-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many excitin…