yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using arithmetic sequences formulas | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

All right, we're told that the arithmetic sequence ( a_i ) is defined by the formula where the ( i )-th term in the sequence is going to be ( 4 + 3 \cdot (i - 1) ). What is ( a_{20} )?

So, ( a_{20} ) is the 20th term in the sequence, and I encourage you to pause the video and figure out what is the 20th term. Well, we can just think about it like this: ( a_{20} ), we just use this definition of the ( i )-th term. Everywhere we see an ( i ), we would put a 20 in.

So, it's going to be ( 4 + 3 \cdot 20 - 1 ). So once again, just to be clear, ( a_{20} ), where instead of ( a_i ), wherever we saw an ( i ), we put a 20. Now we can just compute what this is going to be equal to.

This is going to be equal to ( 4 + 3 \cdot 20 - 1 ).

Let's see, ( 3 \cdot 20 ) is 60. So, this is ( 4 + 60 - 1 ), which equals ( 4 + 60 - 1 = 63 ). Thus, the 20th term in this arithmetic sequence is going to be 63.

Let's do another one of these. Here, they've told us the arithmetic sequence ( a_i ) is defined by the formula ( a_1 ). They give us the first term and say every other term, so ( a_i ), they're defining it in terms of the previous term.

So, ( a_i ) is going to be ( a_{i - 1} - 2 ). This is actually a recursive definition of our arithmetic sequence. Let's see what we can make of this.

So, ( a_5 ) is going to be equal to... we'll use this second line right here. ( a_5 ) is going to be equal to ( a_4 - 2 ). Well, we don't know what ( a_4 ) is just yet, so let's try to figure that out.

So, we could say that ( a_4 ) is equal to... well, if we use the second line again, it's going to be ( a_{3} - 2 ). We still don't know what ( a_{3} ) is. I'll keep switching colors because it looks nice.

( a_3 ) is going to be equal to ( a_{2} - 2 ). We still don't know what ( a_{2} ) is. So we could write ( a_2 = a_{1} - 2 ). Now, luckily, we know what ( a_1 ) is. ( a_1 ) is -7.

So if ( a_1 ) is -7, then ( a_2 = -7 - 2 ), which is equal to -9. Well, that starts helping us out because if ( a_2 ) is -9, then ( a_3 = -9 - 2 ), which is equal to -11.

Well, now that we know that ( a_3 = -11 ), we can figure out ( a_4 = -11 - 2 ), which is equal to -13.

And we're almost there! We know ( a_4 ). The fourth term in this arithmetic sequence is -13, so we can now... if this is -13, ( a_5 ) is going to be ( a_4 ), which is -13 - 2, which is equal to -15.

So the fifth term in the sequence is -15, and we're all done.

More Articles

View All
Khanmigo: Using Class Snapshot
Kanigo is an AI teaching assistant built by Khan Academy and designed to help all students learn. Conmigo has a fun and eccentric personality and is always willing and able to be your creative co-pilot. Conveigo is not just for students; teachers can use …
How to Brute Force your way to $1 Million
Let’s get something out of the way: one million dollars isn’t what it used to be. Yes, it won’t be enough to live a lavish lifestyle for the rest of your life, but it would definitely make your life exponentially better than it is right now. Here’s someth…
How did they actually take this picture? (Very Long Baseline Interferometry)
This video is sponsored by KiwiCo, more about them at the end of the show. This is a picture of the supermassive black hole at the center of our Milky Way galaxy known as Sagittarius A*. The black hole itself doesn’t emit light, so what we’re seeing is th…
The best AI founders in the world are moving here
Why was San Francisco so definitively the center of the tech industry? Why did it all like agglomerate here? San Francisco is the place in the world where you can manufacture luck. Within a month of us moving in, they launched Twitter. I was like, “Wow, t…
The Long Lost White City | Explorer
The legend of CAD Blanca, the White City, has been around for generations of indigenous people in Honduras. The Pech and Tawahka Indians have stories about a white house or a white city. There are all these rumors about seeing the ramparts of a ruined cit…
Are We Alone?
Some of them very likely have planets, and therefore I can imagine civilizations immensely beyond the capabilities of our own. NASA just announced the discovery of 500 new planets; they’re all orbiting other stars. Our place in the universe is relatively …