yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radius comparison from velocity and angular velocity: Worked example | AP Physics 1 | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We are told a red disc spins with angular velocity omega, and a point on the edge moves at velocity V. So they're giving us angular velocity, and also you could view this as linear velocity, and they are both vectors, that's why they are bolded. A blue disc spins with angular velocity two omega, so that's twice the angular velocity, so its angle is changing twice as fast, with a point on the edge moving at velocity 2V, so the linear velocity is also twice, twice the linear velocity of the red disc.

And they ask us which disc has a larger radius. So pause this video and see if you can answer that before we work through it together. So let's first, let's just visualize things. So if this is our red disc, my best shot at drawing a disc, this should be a perfect circle, but I can't hand-draw a perfect circle, but you get the idea.

And let me draw the radius of our red disc, right over there, I'll call that R sub red, and we know a few things. We know that a point right over here has a velocity V, so let me draw that. So let's say it's going right in that direction, right at that moment, it has a velocity V, and we also know that it has an angular velocity of omega.

So our angular velocity is omega in this case, in terms of how fast it is rotating, and then we have our blue disc. So let me draw the blue disc, and I'm gonna draw it at an arbitrary radius, 'cause we haven't figured out how the radii relate to each other just yet. This is, should be a circle, but I'm trying to hand-draw it, alright.

So this is the radius of the blue disc, so I will call that R sub blue, R sub blue, and the velocity of an analogous point right over here is 2V. So I should make that vector twice as tall. So this is 2V right over here, and it has an angular velocity of two omega, so that tells us how fast it is actually rotating.

So how do we make the statement, which disc has a larger radius? Or how do we decide that? Well the key realization is the relationship between the magnitude of angular velocity and the magnitude of velocity. A couple ways to think about it is, the magnitude of angular velocity, notice I didn't put an arrow on top, so I'm just talking about the magnitude of our angular velocity, times our radius is going to be equal to the magnitude of our velocity, or is going to be equal to our speed.

Or another way of thinking about it, if you divide both sides by R, the magnitude of our angular velocity is going to be equal to the magnitude of our velocity, or our speed, over R. Or we can say that R is equal to the speed, magnitude of velocity, over the magnitude of our angular velocity.

So in this situation right over here, for this red disc, we could say that R sub red is equal to V over omega, and over here, we could say that R sub blue is equal to, well the magnitude of the velocity, the speed is going to be 2V over the magnitude of our angular velocity, is going to be two omega.

Well notice, the twos cancel out, so this is just going to be V over omega again. These two things are identical. That is equal to that. So they are actually going to have the exact same radius. So they are the same radius.

More Articles

View All
A Reckoning in Tulsa | Podcast | Overheard at National Geographic
[Music] So I want you to close your eyes and imagine it’s a sunny morning in early May 1921. You’re in Tulsa, Oklahoma, in the bustling all-black Greenwood section of town. A dapper mustachioed man pulls up in front of the Stratford Hotel in a shiny Model…
Consumer Startup Metrics | Startup School
[Music] Welcome to metrics for Consumer startups. In our video on metrics for B2B startups, we talked about net dollar retention and gross margin metrics that are most important for B2B companies. Now we’re going to dig into metrics that are particularly …
Emperors of Pax Romana | World History | Khan Academy
As we saw in the last several videos, the Roman Republic that was established in 509 BCE finally met its end with the rule of Julius Caesar. We talk about Julius Caesar crossing the Rubicon, becoming dictator for life, and then he is assassinated because …
Why You Should Want Driverless Cars On Roads Now
All right, I’m about to go for my first ever ride in a fully autonomous vehicle. Whoa, no driver. All right. [Electronic Voice] Good morning, Derek. This car is all yours with no one up front. I really like the idea of fully autonomous vehicles, but it’…
Making line plots with fractional data
We are told that for four days you record the number of hours you sleep each night. You round each time to the nearest one-fourth of an hour. Then here on this table they tell us that our different days they tell us how many hours we slept. Day one we sl…
With Grace | Short Film Showcase | National Geographic
[Music] [Music] Thank you, thank you. [Music] Come on, I’ve been happening. Okay, okay. [Music] You can even take overnight. Sometimes a day can pass or two. Okay. Foreign [Music] Grace, so I went home to catch up some rest. Around 23 hours, I had a knock…