yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radius comparison from velocity and angular velocity: Worked example | AP Physics 1 | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We are told a red disc spins with angular velocity omega, and a point on the edge moves at velocity V. So they're giving us angular velocity, and also you could view this as linear velocity, and they are both vectors, that's why they are bolded. A blue disc spins with angular velocity two omega, so that's twice the angular velocity, so its angle is changing twice as fast, with a point on the edge moving at velocity 2V, so the linear velocity is also twice, twice the linear velocity of the red disc.

And they ask us which disc has a larger radius. So pause this video and see if you can answer that before we work through it together. So let's first, let's just visualize things. So if this is our red disc, my best shot at drawing a disc, this should be a perfect circle, but I can't hand-draw a perfect circle, but you get the idea.

And let me draw the radius of our red disc, right over there, I'll call that R sub red, and we know a few things. We know that a point right over here has a velocity V, so let me draw that. So let's say it's going right in that direction, right at that moment, it has a velocity V, and we also know that it has an angular velocity of omega.

So our angular velocity is omega in this case, in terms of how fast it is rotating, and then we have our blue disc. So let me draw the blue disc, and I'm gonna draw it at an arbitrary radius, 'cause we haven't figured out how the radii relate to each other just yet. This is, should be a circle, but I'm trying to hand-draw it, alright.

So this is the radius of the blue disc, so I will call that R sub blue, R sub blue, and the velocity of an analogous point right over here is 2V. So I should make that vector twice as tall. So this is 2V right over here, and it has an angular velocity of two omega, so that tells us how fast it is actually rotating.

So how do we make the statement, which disc has a larger radius? Or how do we decide that? Well the key realization is the relationship between the magnitude of angular velocity and the magnitude of velocity. A couple ways to think about it is, the magnitude of angular velocity, notice I didn't put an arrow on top, so I'm just talking about the magnitude of our angular velocity, times our radius is going to be equal to the magnitude of our velocity, or is going to be equal to our speed.

Or another way of thinking about it, if you divide both sides by R, the magnitude of our angular velocity is going to be equal to the magnitude of our velocity, or our speed, over R. Or we can say that R is equal to the speed, magnitude of velocity, over the magnitude of our angular velocity.

So in this situation right over here, for this red disc, we could say that R sub red is equal to V over omega, and over here, we could say that R sub blue is equal to, well the magnitude of the velocity, the speed is going to be 2V over the magnitude of our angular velocity, is going to be two omega.

Well notice, the twos cancel out, so this is just going to be V over omega again. These two things are identical. That is equal to that. So they are actually going to have the exact same radius. So they are the same radius.

More Articles

View All
a day full of eating in Tokyo,Japan 🍣~ spend the day with me🇯🇵
Hey fam! To welcome you to a day in my life in Tokyo. This day is full of adventures, and today I’m excited to share with you some of my favorite activities. First up, we have Ginson. The restaurant is hidden away from the street, but once you enter the r…
BRA GUN??? -- Mind Blow #17
A bra gun holster? An electromagnet plus balls equals woooo! Vsauce, Kevin here. This is Mind Blow. Touch screens are okay, but how about touching a force field? Using infrared sensors, this multi-touch system allows a traditional monitor to be manipulat…
Dave Ramsey Reacts To My $25 Million Dollar Investment
And there’s my debt: uh, four million twenty thousand dollars. Uh, it’s all five mortgages: 30-year fixed between 2.875 and 3.625. I mean, if you’re willing to let that kind of money just evaporate, I personally don’t do anything like that, so I never tho…
15 BEST Books on LEADERSHIP
You are watching the book club! Every Wednesday, we handpick the best books to improve your life. The 15 best books on leadership! Welcome to aLux.com, the place where future billionaires come to get inspired. If you’re not subscribed yet, you’re missing…
Kirchhoff's voltage law | Circuit analysis | Electrical engineering | Khan Academy
Now we’re ready to start hooking up our components into circuits, and one of the two things that are going to be very useful to us are Kof’s laws. In this video, we’re going to talk about Kof’s voltage law. If we look at this circuit here, this is a volt…
Uncut Interview with Sam Altman on Masters of Scale [Audio]
Hey, how’s it going? This is Craig Cannon, and you’re listening to Y Combinator’s podcast. So today, we have an uncut interview from the Masters of Scale podcast, and in it, Reed Hoffman, the co-founder of LinkedIn, interviews Sam Altman. All right, here …