yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB/BC 1d | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Part D. The pipe can hold 50 cubic feet of water before overflowing. For T greater than 8, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Right, but do not solve an equation involving one or more integrals that gives the time W when the pipe will begin to overflow.

All right, so the pipe is going to overflow. We want to figure out the equation that gives the time W when the pipe begins to overflow. The pipe will begin to overflow when it crosses 50 cubic feet of water, you could say, right? When it hits 50 cubic feet of water, then it will begin to overflow.

So, we can figure out at what time the pipe has 50 cubic feet of water in it. We could just say, well, W of this time. I used uppercase W as my function for how much water is in the pipe, so capital W of lowercase w is going to be equal to 50, and so you would just solve for the W. And they say, right, but do not solve an equation.

Well, just to make this a little bit clearer, if D uppercase W of lowercase w is going to be 30 plus the integral from 0 to W. Actually, now, since I don't have T as one of my bounds, I could just say R of T minus D of T DT. So, let me just do that: R of T minus D of T DT.

So, this is the amount of total water in the pipe at time W. Well, this is going to be equal to 250. So, we have just written an equation involving one or more integrals that gives the time W when the pipe will begin to overflow.

So, if you could solve for W, that's the time that the pipe begins to overflow, and we are assuming that it doesn't just get to 50 and then somehow come back down. That it'll cross 50 at this time right here. You could test that a little bit more if you want. You could try slightly larger W or you could see that the rate that you have more flowing in than flowing out at that time, which is so this R of w is going to be greater than D of w.

So, it means you're only going to be increasing, so you're going to cross over right at that time. If you wanted that W, though, you'd solve this. Now, another option you could say, okay, we know W is going to be greater than 8. So you could say, okay, how much water do we have right at time equals 8? We figured that out in the last problem.

So you could say, at time equals 8, we have that much, 48.54. This is an approximation, but it's pretty close. Plus the amount of water we accumulate between time 8 and time W of R of T minus D of T DT is equal to 50. Either one of these would get you to the same place, the W at right when do we hit 50 cubic feet of water.

Then, if you wanted to test it further, you can make sure that your rate is increasing right at that or you have a net positive inflow of water at that point, which tells you that you're just about to start overflowing.

More Articles

View All
Newton's second law calculations | Physics | Khan Academy
Let’s solve a couple of problems on Newton’s Second Law. Here’s the first one: we have an elevator which is moving up, and let’s say the mass of the elevator, including the passenger inside, is 1,000 kg. Now, if the force, the tension force of the cable,…
Multiplying decimals using estimation
So let’s see if we can come up ways to compute what 2.8 times four point seven three is. So pause this video and try to work it out. Actually, I’ll give you a hint: try to figure out just using the digits, not even paying attention to the decimals, the di…
Danae Ringelmann at Startup School SV 2014
First of all, this is totally awesome. Um, I want everybody to actually take a minute, a moment of silence, and appreciate the fact that you’re here. Um, and appreciate the fact that your whole life has been leading to this point. You might all be thinkin…
Ecosystem dynamics: Clark’s nutcrackers and the white bark pine | Khan Academy
What’s that? That sound, that call, sounds like something a crow would make but not quite. That’s actually the call of a really interesting bird called Clark’s nutcracker. These birds are cousins of the American crow, which you might see and hear around …
How Philosophers Handle Rejection (Diogenes, Schopenhauer, Epictetus & Zhuangzi)
Living in absolute poverty, the great cynic philosopher Diogenes slept in public places and begged for food. One day, he begged in front of a statue. When someone asked him why he did so, Diogenes answered: “To get practice in being refused.” For a beggar…
What Do You Need to Do to Survive Coronavirus? | Ask Mr. Wonderful #22 Kevin O'Leary
[Music] Hi, everybody. I started to do some work on this week’s Ask Mr. Wonderful and went into the database to start listening to the questions from all around the world. Clearly, this is an extraordinary situation because everybody is concerned about t…