yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB/BC 1d | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Part D. The pipe can hold 50 cubic feet of water before overflowing. For T greater than 8, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Right, but do not solve an equation involving one or more integrals that gives the time W when the pipe will begin to overflow.

All right, so the pipe is going to overflow. We want to figure out the equation that gives the time W when the pipe begins to overflow. The pipe will begin to overflow when it crosses 50 cubic feet of water, you could say, right? When it hits 50 cubic feet of water, then it will begin to overflow.

So, we can figure out at what time the pipe has 50 cubic feet of water in it. We could just say, well, W of this time. I used uppercase W as my function for how much water is in the pipe, so capital W of lowercase w is going to be equal to 50, and so you would just solve for the W. And they say, right, but do not solve an equation.

Well, just to make this a little bit clearer, if D uppercase W of lowercase w is going to be 30 plus the integral from 0 to W. Actually, now, since I don't have T as one of my bounds, I could just say R of T minus D of T DT. So, let me just do that: R of T minus D of T DT.

So, this is the amount of total water in the pipe at time W. Well, this is going to be equal to 250. So, we have just written an equation involving one or more integrals that gives the time W when the pipe will begin to overflow.

So, if you could solve for W, that's the time that the pipe begins to overflow, and we are assuming that it doesn't just get to 50 and then somehow come back down. That it'll cross 50 at this time right here. You could test that a little bit more if you want. You could try slightly larger W or you could see that the rate that you have more flowing in than flowing out at that time, which is so this R of w is going to be greater than D of w.

So, it means you're only going to be increasing, so you're going to cross over right at that time. If you wanted that W, though, you'd solve this. Now, another option you could say, okay, we know W is going to be greater than 8. So you could say, okay, how much water do we have right at time equals 8? We figured that out in the last problem.

So you could say, at time equals 8, we have that much, 48.54. This is an approximation, but it's pretty close. Plus the amount of water we accumulate between time 8 and time W of R of T minus D of T DT is equal to 50. Either one of these would get you to the same place, the W at right when do we hit 50 cubic feet of water.

Then, if you wanted to test it further, you can make sure that your rate is increasing right at that or you have a net positive inflow of water at that point, which tells you that you're just about to start overflowing.

More Articles

View All
Relationships between scientific ideas in a text | Reading | Khan Academy
Hello readers, this is Professor Mario Molina, a scientist who won the Nobel Prize for Chemistry. Now, I’m going to use the example of Professor Molina to teach us about connections, or drawing connections between scientific information in a text, in a pi…
April Fools Parody Home Tour
What’s up, you guys? It’s Graham here. So I got to say, it’s been really hard for me to keep this a secret for really the last month, but I just closed escrow on my dream home here in Hollywood for just under 30 million dollars. So I know you guys have re…
#shorts
Here’s a day in the life of a private jet broker. I arrived at the office at 7:00 a.m. to respond to some important emails from Hong Kong and Dubai, ensuring they were received within their working hours. Being on time builds trust and keeps things runni…
Breaking apart 3-digit addition problems | 2nd grade | Khan Academy
Mike isn’t sure how to add 189 + 608, help Mike by choosing an addition problem that is the same as 189 + 608. Now let’s look at these choices. Let’s just start with this first choice. Actually, all of these choices start with having 1 hundred; they all…
Introduction to division with partial quotients
In this video, we want to compute what 833 divided by seven is. So, I encourage you to pause this video and see if you can figure that out on your own. All right, now let’s work through it together. You might have appreciated this is a little bit more di…
How to grow a YouTube Channel in 2017: YouTube Algorithm Revealed??
All right, so let’s do this as a total experiment. Like this video and comment something down below. I don’t care if it’s your favorite color, your favorite number, just something. So if my theory is correct, that’s going to increase the level of engageme…