yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

A brief history of plastic


3m read
·Nov 8, 2024

Today, plastics are everywhere. All of this plastic originated from one small object—that isn’t even made of plastic. For centuries, billiard balls were made of ivory from elephant tusks. But when excessive hunting caused elephant populations to decline in the 19th century, billiard ball makers began to look for alternatives, offering huge rewards.

So in 1863, an American named John Wesley Hyatt took up the challenge. Over the next five years, he invented a new material called celluloid, made from cellulose, a compound found in wood and straw. Hyatt soon discovered celluloid couldn’t solve the billiard ball problem—the material wasn’t heavy enough and didn’t bounce quite right. But it could be tinted and patterned to mimic more expensive materials like coral, tortoiseshell, amber, and mother-of-pearl. He had created what became known as the first plastic.

The word ‘plastic’ can describe any material made of polymers, which are just the large molecules consisting of the same repeating subunit. This includes all human-made plastics, as well as many of the materials found in living things. But in general, when people refer to plastics, they’re referring to synthetic materials. The unifying feature of these is that they start out soft and malleable and can be molded into a particular shape.

Despite taking the prize as the first official plastic, celluloid was highly flammable, which made production risky. So inventors began to hunt for alternatives. In 1907, a chemist combined phenol—a waste product of coal tar—and formaldehyde, creating a hardy new polymer called bakelite. Bakelite was much less flammable than celluloid, and the raw materials used to make it were more readily available.

Bakelite was only the beginning. In the 1920s, researchers first commercially developed polystyrene, a spongy plastic used in insulation. Soon after came polyvinyl chloride, or vinyl, which was flexible yet hardy. Acrylics created transparent, shatter-proof panels that mimicked glass. And in the 1930s, nylon took centre stage—a polymer designed to mimic silk, but with many times its strength.

Starting in 1933, polyethylene became one of the most versatile plastics, still used today to make everything from grocery bags to shampoo bottles to bulletproof vests. New manufacturing technologies accompanied this explosion of materials. The invention of a technique called injection-moulding made it possible to insert melted plastics into molds of any shape, where they would rapidly harden.

This created possibilities for products in new varieties and shapes—and a way to inexpensively and rapidly produce plastics at scale. Scientists hoped this economical new material would make items that once had been unaffordable accessible to more people. Instead, plastics were pushed into service in World War Two. During the war, plastic production in the United States quadrupled.

Soldiers wore new plastic helmet liners and water-resistant vinyl raincoats. Pilots sat in cockpits made of plexiglass, a shatterproof plastic, and relied on parachutes made of resilient nylon. Afterwards, plastic manufacturing companies that had sprung up during wartime turned their attention to consumer products. Plastics began to replace other materials like wood, glass, and fabric in furniture, clothing, shoes, televisions, and radios.

Versatile plastics opened up possibilities for packaging—mainly designed to keep food and other products fresh for longer. Suddenly, there were plastic garbage bags, stretchy plastic wrap, squeezable plastic bottles, takeaway cartons, and plastic containers for fruit, vegetables, and meat. Within just a few decades, this multifaceted material ushered in what became known as the “plastics century.”

While the plastics century brought convenience and cost-effectiveness, it also created staggering environmental problems. Many plastics are made of nonrenewable resources. And plastic packaging was designed to be single-use, but some plastics take centuries to decompose, creating a huge build-up of waste.

This century, we’ll have to concentrate our innovations on addressing those problems—by reducing plastic use, developing biodegradable plastics, and finding new ways to recycle existing plastic.

More Articles

View All
Life’s short
Life is short. I’m dying every minute at a time. Right? It’s a, it’s a— you, you. We’ve been dead for 13 and 12 billion years. That’s a lot! That’s how long from The Big Bang till now. The universe will be around 70 billion years. You’re around for 50, 70…
Big Tech is Destroying Ownership
Do you own the music that you listen to? If you collect vinyl records or just happen to still have CDs laying around, then you do. But the majority of us in 2023 rely on subscription services like Spotify or Apple Music to borrow the music we enjoy. What…
A Growing Epidemic | Breakthrough
2014, in West Africa, the Ebola virus continues its exponential spread. Hospitals are swamped with patients, and the already weak health care infrastructure begins to collapse. Virologists from around the world come to help. Dr. Daniel Bausch, a specialis…
Estimating subtracting decimals
[Instructor] Alright, now let’s get some practice estimating, subtracting decimals. So, over here it says 12.93 minus 6.1 is approximately equal to what? This squiggly-looking equal sign you can view as roughly equal to or approximately equal to. So, paus…
How to avoid jet lag!
Hey Steve, I just landed from Vegas and I’m super jet lagged. Why is that? So, the problem is it’s not from jet lag from time zone difference. The reason you’re feeling jet lagged is because of cabin altitude. Cabin altitude in an airplane is the altit…
Introduction to utility | APⓇ Microeconomics | Khan Academy
We are now going to introduce ourselves to the idea of utility in economics. Now, in everyday language, if someone says, “What’s the utility of that?” they’re usually saying, “What’s the usefulness of doing that?” Utility in economics takes that view of …