yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
Is Warren Buffett's 'Value Investing' Dead?
Hey guys, welcome back to the channel! In this video, we’re going to be doing a video talking about a popular topic at the moment. I’ve seen a lot of videos floating around talking about this. The topic is whether value investing is dead. So today, we’re…
Once You Get Money Upgrade These 15 Things Immediately
They lied to you. They told you to get the fast car, the diamond chain, the mansion. But deep down, you know those are just marketing campaigns to separate you from your hard-earned money. Do that, and you’ll be back to being broke in no time. But there a…
Production Possibilities Curve as a model of a country's economy | AP Macroeconomics | Khan Academy
Let’s say that we have some country, let’s call it Utense Landia, that can only produce one of two goods or some combination of them. So it can produce forks, and it can produce, or it could produce, spoons. This axis is the quantity of forks; this axis i…
The Hazards of High Altitude: A Mistake on the First Attempt | Edge of the Unknown on Disney+
[Music] When you’re climbing on a Himalayan giant, you have no margin for error. Altitude is this invisible, debilitating challenge that you face. Leaning over to even tighten your boots can put you out of breath. Decision-making becomes much slower becau…
The Technological Singularity
Up until I was like 15, the way I found new music was through friends or songs that you hear in the background on my favorite TV shows or movies. This could be a really slow process, if you, like me, have a somewhat unconventional taste in music. So it wa…
Saving Bumblebees Became This Photographer's Mission | Short Film Showcase
[Music] I started this journey chasing one ghost and ended up taking a lesson from another. We humans defend the things we value. That’s why I traveled halfway across the country looking for [Music] bees. I can’t remember what first attracted me to insect…