yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
Lecture 15 - How to Manage (Ben Horowitz)
So when Sam originally sent me an email to do this course, he said, “Ben, can you teach a 15-minute course on management?” And I immediately thought to myself, wow, I just wrote a 300-page book on management, so that book was entirely too long. And I, I d…
Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy
The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT. Now, at first when you see this, you’re like, “Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but on…
The Immigrant Journey Behind A Silicon Valley Success Story
Immigrants, we get the job done. Today we’re sitting down with one of the best founders of a generation, Tracy Young, co-founder of PlanGrid, which sold to Autodesk for 875 million dollars, who’s back with her new startup called Tiger Eye. But today, sinc…
What is Origins? - Behind the Scenes | Origins: The Journey of Humankind
I want to take people out of their heads. I want origins to inject people with a sense of wonder. Origins is the journey of humankind. It’s basically a show that reinvents the sort of historical epic from a modern perspective. So, through a modern lens, …
Life Below the Ocean Surface | StarTalk
So you know that’s a fish. Oh, that’s cool. He’s cute, or she. You can’t even tell. But what is that fish thinking? Is it like— is it nostalgia? Is it rage? Maybe I’m just projecting. But you can’t really tell what it’s thinking. It’s a mystery. It’s an e…
Make Bold Guesses and Weed Out the Failures
Going even further, it’s not just science. When we look at innovation and technology and building, for example, everything that Thomas Edison did and Nikola Tesla did, these were from trial and error, which is creative guesses and trying things out. If y…