yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
Lithium 101 | National Geographic
(clanging) [Narrator] Over the course of human history, fuel for industry has come in many forms. But one of the major drivers of development in the current technological age is a highly volatile element that makes up only 0.002% of the Earth’s crust. Su…
Worked example: forming a slope field | AP Calculus AB | Khan Academy
In drawing the slope field for the differential equation, the derivative of y with respect to x is equal to y minus 2x. I would place short line segments at select points on the xy-plane. At the point (-1, 1), I would draw a short segment of slope blank.…
Angular velocity graphs due to multiple torques
A disc is initially rotating clockwise around a fixed axis with angular speed omega naught. At time t equals 0, the two forces, F₁ is equal to 20 newtons and F₂ is equal to 10 newtons, are exerted on the disk as shown in the figure below. So these are the…
Diversity, Equity, and Inclusion
All right, welcome back. A big shock from a big retailer, Tractor Supply, which actually is huge, got more than 2,200 stores all across America. Last night, coming out and saying they are cutting all of their diversity, equity, and inclusion efforts. That…
Khan Academy Student Demo
Hi everyone, this is Jeremy Shiffling from Khan Academy. Thanks so much for taking time to join me in this big week, either before the start of school or in the middle of the start of school, depending on where you’re calling from. But wherever you are in…
Dividing by a two digit number
In this video, we’re going to get a little bit of practice dividing by a two-digit number. So let’s say that we have 4781 divided by 32. Pause this video and see if you can figure out what that’s going to be and if there is a remainder, figure out what th…