yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
Adding 1 vs. adding 10 | Addition and subtraction | 1st grade | Khan Academy
So pause this video and real quick figure out what 27 plus 1 is, and then if possible, figure out what 27 plus 10 is. All right, so a lot of, let’s think about it together. You might have been able to do this one pretty easily. You might have said, okay,…
Example of vector magnitude from initial and terminal points
What we have depicted here we could call vector w, and you can see from this diagram that its initial point is right over here. It’s the point negative seven, comma, positive three, and its terminal point is this point right over here, which is the point …
How to Build a One-Person Business in 2025 (In 12 Months or Less)
This year I made over 360k US from this YouTube channel without having any full-time employees, and in this video I’m going to show you how I would do that exactly, step by step, in the next 12 months so that you can copy my framework in 2025. But be care…
Peter Lynch's Tips to Prepare for a Stock Market Crash
What you learn from history is the market goes down. It goes down a lot. The math is simple. There’s been 93 years, a century. This is easy to do. The market’s had 50 declines of 10% or more. So, 50 declines in 93 years, about once every two years. The m…
Renting vs Buying a Home: What NOBODY Is Telling You
What’s up you guys? It’s Graham here. So the other day, one of my posts on LinkedIn went somewhat viral on Reddit where I said if you were to buy a million-dollar home, you would have to put $200,000 down, take on a mortgage of $5,600 a month, pay another…
Mr. Freeman, part 00
So here you are. You’ve laid your fears and doubts on the bonfire for me to burn the hell out of them. Now I step out into the center of this effin coliseum with a torch and a gas can in my hands. In front of me — a crowd of naked people backing up agains…