yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
How To Design Your Dream Life (In Just 30 Days)
What if you could achieve your dream life by following a simple step-by-step system, checking off the boxes to organize strategic and fulfilling tasks designed to guide you on a path to make you realize your higher self? Yeah, right! If it was only that e…
Worked example: Calculating E° using standard reduction potentials | AP Chemistry | Khan Academy
Let’s do a worked example where we calculate the standard potential at 25 degrees celsius for this reaction. In this redox reaction, silver cations are reduced to form solid silver, and solid chromium is oxidized to form the Cr3 plus ion. The first step …
The Dilemma Of Loneliness
In the age of individualism (in Western countries at least), there is an increasing concern in regards to social isolation. We see this happening with the elderly, that are put away in retirement homes, deprived of interaction with children and grandchild…
Charlie Munger: How to Survive the Economic Recession
This video is sponsored by MorningBrew. You can sign up to their daily newsletter for free using the link in the description. The country did not need a currency that’s good for kidnappers and so on. What do you think happened? Because there are a lot of…
Ballet Shoes: The Craft Before the Dance | Short Film Showcase
My name’s Tony Collins of Jim to free data. As a young lad, I arrived on the end of ‘69, 1969. I’ve been here ever since and out the lot of it at the old school from where we originated from Leicester Square. This is about three of us left in the firm sti…
Chamath Palihapitiya: The #1 Secret to Becoming Rich
Slow and steady against hard problems. Start by turning off your social apps and giving your brain a break because then you will at least be a little bit more motivated to not be motivated by what everybody else [__] thinks about you. I saw some of the v…