yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
How China Rips Off American Small Businesses
[Music] Let’s say you have a product that you’re going to use Chinese manufacturing. You used to think it was low cost. You buy the molds, you spend $400,000 on molds. You start making the product, you start selling it in the United States. The minute i…
Bitcoin To $1,000,000 | Meet Kevin Pt 2
Gary Gensler, a few weeks ago, compared regulation in the cryptocurrency market to regulation in cars. When we finally had cars get regulated, we had stop signs, we had crosswalks, and traffic lights. Car adoption skyrocketed. Do you think the same thing …
Part-to-whole relationships in text structure | Reading | Khan Academy
Hello readers. Today we’re going to be talking about how smaller sections of text work together to support the whole text. But first, let us consider Voltron. It is a giant robot made up of five smaller robots, each one piloted by a person. Five friends, …
6 WORST Villains EVER!
Vsauce. Michael here today with a special video. It’s a Skype conversation I had with Newt from Underbelly, where he teaches me about six actual villains from real comic books that are really, really lame. He’s joined by a bunch of ladies from Underbelly,…
The Cure To Laziness (This Could Change Your Life) | Marcus Aurelius | Stoic | Stoicism
[Music] In the heart of a bustling city, a single decision by Marcus Aurelius over 2,000 years ago still echoes. The profound impact of stoic philosophy on our lives today is immense. This ancient wisdom teaches us not just to endure life’s storms, but to…
It's Surprising How Much Small Teams Can Get Done - Sam Chaudhary of ClassDojo
Well, I don’t want to miss this story. Uh-huh. Oh, sly grin. Yeah, so little known fact: one of your first investors was Paul Graham of Y Combinator. Yeah, can you tell us about that meeting? What convinced PG to write you a check? Yeah, it was hilarious…