yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating exponent expressions with variables


2m read
·Nov 11, 2024

We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2).

All right, now let's work through this together. So what we want to do is everywhere we see an (x), we want to replace it with a (2). So this expression for (x) equals (2) would be (5) to the second power minus (3) to the second power.

Well, what's that going to be equal to? Well, (5) to the second power that's the same thing as (5) times (5), and then from that, we are going to subtract (3) times (3). Now, order of operations would tell us to do the multiplication or do the exponents first, which is this multiplication, but just to make it clear I'll put some parentheses here.

And this is going to be equal to (5) times (5) is (25) minus (9), which is equal to plus (25) minus (9). It is equal to (16). So that's what that expression equals for (x) equals (2).

Let's do another example. So now we are asked what is the value of (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2). So once again pause this video and see if you can evaluate that.

All right, so here we are. We have variables as the bases as opposed to being the exponents, and we have two different variables. But all we have to do is wherever we see a (y), we substitute it with a (9), and wherever we see an (x), we substitute it with a (2).

So (y) squared is going to be the same thing as (9) squared minus—minus (x), which is (2). That minus looks a bit funny; let me see. So this is going to be (9) squared minus (x), which is (2) to the fourth power.

Now, what is this going to be equal to? Well, (9) squared is (9) times (9). So this whole thing is going to be equal to (81). This whole thing right over here is (9) times (9); (9) times (9) is that right over there, and then from that, we're going to subtract (2) to the fourth power.

Well, what's (2) to the fourth power? That is (2) times (2) times (2) times (2). So this is going to be (2) times (2) is (4), (4) times (2) is (8), and (8) times (2) is (16). So it's (81) minus (16).

Now what is that going to be equal to? Let's see. (81) minus (6) is (75), and then minus another (10) is going to be (65). So there you have it: (y) squared minus (x) to the fourth when (y) is equal to (9) and (x) equals (2) is equal to (65), and we're done.

More Articles

View All
The Real Reason Robots Shouldn’t Look Like Humans | Supercut
When people think about robots, they usually imagine something like a Boston Dynamics robot, metallic and humanoid. But the robots we’ll see in the future might not look like that at all. I mean, if humans are interacting with something on a daily basis, …
Turning Your Users Into Paying Customers
The best feedback you’re gonna get about your product is in the three seconds after you tell them the price. Yes. [Music] Hello, this is Michael with Harj and Brad. Welcome to Inside the Group Partners Lounge. So, as you see Group Partners, we find ours…
Treating systems (the easy way) | Forces and Newton's laws of motion | Physics | Khan Academy
So in the previous video, we solved this problem the hard way. Maybe you watched it, maybe you didn’t. Maybe you just skipped right to here and you’re like, “I don’t even want to know the hard way. Just show me the easy way, please.” Well, that’s what we’…
My Turkish Friend tries weird Japanese snacks🇯🇵🇹🇷 @ResatOren
I mean, at least at least we’re being creative. All right, we have a lot of stuff going on here. What’s going on here? What’s going on? What does that mean? All right, so what did you just say? Did you just use the f word? I’m a good girl. I don’t do that…
Calculations using Avogadro's number (part 1) | Chemistry | Khan Academy
I have about 3.21 grams of sulfur powder over here. My question to you is, how many atoms of sulfur are there? At first, this question sounds ridiculous. I mean, there’s going to be lots and lots of atoms. How in the world are we going to count that? That…
Representing systems of equations with matrices | Matrices | Precalculus | Khan Academy
I’m a big fan of looking at the same problem in different ways or different ways to conceptualize them. For example, if I had a system of three equations with three unknowns, let me just make one up: Three x minus two y minus z is equal to negative one. …