yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring polynomials using complex numbers | Khan Academy


2m read
·Nov 10, 2024

We're told that Ahmat tried to write ( x^4 + 5x^2 + 4 ) as a product of linear factors. This is his work, and then they tell us all the steps that he did, and then they say in what step did Ahmad make his first mistake. So pause this video and see if you can figure that out.

All right, now let's work through this together. So we're starting with ( x^4 + 10x^2 + 9 ), and it looks like Ahmad tried to factor that into ( (x^2 + 9)(x^2 + 1) ). And this indeed does make sense because if we said that let's say ( u ) is equal to ( x^2 ), we could rewrite this right over here as ( u^2 + 10u + 9 ). The whole reason why you would do this is so that you could write this higher order expression in terms of a second degree expression.

Then we've learned how to factor things like this many times. We look, and we say, "Okay, what two numbers when I add them I get 10, and when I multiply them I get 9?" It would be 9 and 1. So you could write this as ( (u + 9)(u + 1) ). And of course, if ( u ) is equal to ( x^2 ), this would be ( (x^2 + 9)(x^2 + 1) ), which is exactly what Ahmad has right over here. So step 1 is looking great.

All right, now let's think about what Ahmad did in step two. They didn't do anything to ( x^2 + 9 ), but it looks like they tried to further factor ( x^2 + 1 ). And this does seem right; we just have to remind ourselves, just as you have a difference of squares if you're dealing with non-complex numbers. So we could rewrite this right over here as ( (x + a)(x - a) ).

We could have a sum of squares if we're thinking about complex numbers; this is going to be ( (x + ai)(x - ai) ). And in this situation, well, the ( x ) is ( x ), and then our ( a ) would be 1. So we're going to have ( (x + i)(x - i) ). So step 2 is looking great, and now let's go to step three.

So in step three, there’s no change to this part of the expression, and it looks like Ahmad is trying to factor ( x^2 + 9 ) based on the same principle. Now, ( x^2 + 9 ) is the same thing as ( x^2 + 3^2 ). So if you use this exact same idea here, if you factor it, it should be ( (x + 3i)(x - 3i) ).

But what we see over here is Ahmad took the square root of three instead of just having a three here. Ahmad treated it instead of having a nine here as if we actually had a three. So they made a little bit of an error there. So this is the step where Ahmad makes his first mistake, and we're done.

More Articles

View All
IGTV...is this the end of YouTube?
There we have it, you guys! Shots fired! I thought it was relatively unfeasible for a company to potentially disrupt and take market share away from YouTube, which pretty much has a monopoly on long form user-generated content. That is until now. Now, for…
Michael Seibel - How to Plan an MVP
My name is Michael. Uh, I work here at Y Combinator. I helped run the accelerator. Uh, before that, I did two YC startups—one in 2007 and one in 2012. Today, I’m going to talk to you about a minimum viable product, so MVP. We always yell at founders to n…
How Horses Save Humans From Snakebites
[Zac] Are you all right to grab the back end? [Derek] Uh, well, not at the moment. Not yet. Get him up. You gotta lock him in. A scratch from this species will knock you. Knock you down… Could kill you? Or… Oh definitely, yeah, yeah, yeah. Okay. So I am…
Directional derivatives and slope
Hello everyone! So what I want to talk about here is how to interpret the directional derivative in terms of graphs. I have here the graph of a function, a multivariable function: it’s ( F(x, y) = x^2 \cdot y ). In the last couple of videos, I talked abo…
Sadie's Summer Camp - Bonus Scene | Gender Revolution
NARRATOR: I met so many families, moms and dads, brothers and sisters, all adjusting to a new normal when a child tells them, “I’m not a boy or I’m not a girl.” But as the saying goes, it takes a village. So I wondered, how are the institutions who help r…
Neil deGrasse Tyson on a Dystopic Future | Breakthrough
It’s always been a curious fact to me that the most successful science fiction storytelling involves completely dystopic scenarios or finales, and all of them, essentially all of them. Now maybe at the end they give you some glimmer of hope, but somethin…