yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring polynomials using complex numbers | Khan Academy


2m read
·Nov 10, 2024

We're told that Ahmat tried to write ( x^4 + 5x^2 + 4 ) as a product of linear factors. This is his work, and then they tell us all the steps that he did, and then they say in what step did Ahmad make his first mistake. So pause this video and see if you can figure that out.

All right, now let's work through this together. So we're starting with ( x^4 + 10x^2 + 9 ), and it looks like Ahmad tried to factor that into ( (x^2 + 9)(x^2 + 1) ). And this indeed does make sense because if we said that let's say ( u ) is equal to ( x^2 ), we could rewrite this right over here as ( u^2 + 10u + 9 ). The whole reason why you would do this is so that you could write this higher order expression in terms of a second degree expression.

Then we've learned how to factor things like this many times. We look, and we say, "Okay, what two numbers when I add them I get 10, and when I multiply them I get 9?" It would be 9 and 1. So you could write this as ( (u + 9)(u + 1) ). And of course, if ( u ) is equal to ( x^2 ), this would be ( (x^2 + 9)(x^2 + 1) ), which is exactly what Ahmad has right over here. So step 1 is looking great.

All right, now let's think about what Ahmad did in step two. They didn't do anything to ( x^2 + 9 ), but it looks like they tried to further factor ( x^2 + 1 ). And this does seem right; we just have to remind ourselves, just as you have a difference of squares if you're dealing with non-complex numbers. So we could rewrite this right over here as ( (x + a)(x - a) ).

We could have a sum of squares if we're thinking about complex numbers; this is going to be ( (x + ai)(x - ai) ). And in this situation, well, the ( x ) is ( x ), and then our ( a ) would be 1. So we're going to have ( (x + i)(x - i) ). So step 2 is looking great, and now let's go to step three.

So in step three, there’s no change to this part of the expression, and it looks like Ahmad is trying to factor ( x^2 + 9 ) based on the same principle. Now, ( x^2 + 9 ) is the same thing as ( x^2 + 3^2 ). So if you use this exact same idea here, if you factor it, it should be ( (x + 3i)(x - 3i) ).

But what we see over here is Ahmad took the square root of three instead of just having a three here. Ahmad treated it instead of having a nine here as if we actually had a three. So they made a little bit of an error there. So this is the step where Ahmad makes his first mistake, and we're done.

More Articles

View All
The Life of a Baby Polar Bear - Ep. 4 | Wildlife: The Big Freeze
[Narrator] Before becoming the biggest land predator on the planet, polar bears are born small and helpless. They must then embark on an odyssey to grow more than 100 times their weight. And learn everything they need to survive before their mother abando…
LearnStorm Growth Mindset: Dr. Michael Merzenich on growing your brain
But we’ve actually trained athletes, you could say, on the sort of academic side of training you would not necessarily imagine. And guess what? It improves our performance on the field. What’s happening for a couple of reasons. One reason is that you’re …
$0 DOWN MORTGAGES ARE BACK (Get Paid To Buy A Home)
What’s up you guys? It’s Graham here, and the housing market is about to explode. That’s right! In the middle of record-high prices, record-high mortgage rates, and record-low inventory, a brand new proposal was just announced that would give first-time h…
Mozart Helps Me Think | Genius
[music playing] [glass hitting metal] [light scraping sound] [violin playing] [LIGHT CRASH OF GLASS INTO METAL] [footsteps] [side conversation] ALBERT: Miss Maric. MILEVA: Are you under the impression you’re the only one in the building? ALBERT: …
Wolves in Yellowstone, LIVE! | Yellowstone Live
How’re you guys doing? We’re live in West Yellowstone ahead of Yellowstone Live tonight at 9:00, 8:00 Central on National Geographic and Nat Geo Wild with Trent, a naturalist at the Grizzly Wolf Discovery Center. Thank you so much for being here. Q: Tell…
INSANE BEATBOX and Other MOUTH NOISES -- BOAT
Here’s a guy whose mouth can sound like an engine. And this woman can be a human car alarm. But are those the best mouth noises of all-time? And better yet, what happened to my beard? Well, to figure out the answer to this one, you’ll have to wait for ‘Th…