yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring polynomials using complex numbers | Khan Academy


2m read
·Nov 10, 2024

We're told that Ahmat tried to write ( x^4 + 5x^2 + 4 ) as a product of linear factors. This is his work, and then they tell us all the steps that he did, and then they say in what step did Ahmad make his first mistake. So pause this video and see if you can figure that out.

All right, now let's work through this together. So we're starting with ( x^4 + 10x^2 + 9 ), and it looks like Ahmad tried to factor that into ( (x^2 + 9)(x^2 + 1) ). And this indeed does make sense because if we said that let's say ( u ) is equal to ( x^2 ), we could rewrite this right over here as ( u^2 + 10u + 9 ). The whole reason why you would do this is so that you could write this higher order expression in terms of a second degree expression.

Then we've learned how to factor things like this many times. We look, and we say, "Okay, what two numbers when I add them I get 10, and when I multiply them I get 9?" It would be 9 and 1. So you could write this as ( (u + 9)(u + 1) ). And of course, if ( u ) is equal to ( x^2 ), this would be ( (x^2 + 9)(x^2 + 1) ), which is exactly what Ahmad has right over here. So step 1 is looking great.

All right, now let's think about what Ahmad did in step two. They didn't do anything to ( x^2 + 9 ), but it looks like they tried to further factor ( x^2 + 1 ). And this does seem right; we just have to remind ourselves, just as you have a difference of squares if you're dealing with non-complex numbers. So we could rewrite this right over here as ( (x + a)(x - a) ).

We could have a sum of squares if we're thinking about complex numbers; this is going to be ( (x + ai)(x - ai) ). And in this situation, well, the ( x ) is ( x ), and then our ( a ) would be 1. So we're going to have ( (x + i)(x - i) ). So step 2 is looking great, and now let's go to step three.

So in step three, there’s no change to this part of the expression, and it looks like Ahmad is trying to factor ( x^2 + 9 ) based on the same principle. Now, ( x^2 + 9 ) is the same thing as ( x^2 + 3^2 ). So if you use this exact same idea here, if you factor it, it should be ( (x + 3i)(x - 3i) ).

But what we see over here is Ahmad took the square root of three instead of just having a three here. Ahmad treated it instead of having a nine here as if we actually had a three. So they made a little bit of an error there. So this is the step where Ahmad makes his first mistake, and we're done.

More Articles

View All
Spool Trick
Today I’m doing a two-part experiment involving a spool. I’ve wrapped some nylon rope around the spool, and right now it’s coming over the top, as you can see. I’m going to place the spool down beside me, and I’m going to pull the rope horizontally toward…
Bird Taking Off at 20,000 fps (213 milliseconds) - Smarter Every Day 197
Hey, it’s me, Destin. Sorry for the vertical video there. I was recording for the Instagram story. So I caught this bird with my hand, and I got to thinking about it. It’s kind of a shame to have a bird and let it go and not film it in slow motion. So, th…
Behind the Scenes: Documenting the Elusive Florida Panther | National Geographic
Foreign and that’s how you test. I don’t think I had any idea what I was getting into at the beginning of this project. I’ve only seen a Florida panther twice with my own eyes. The animals that we’re trying to film and photograph are super elusive. There’…
China is Uninvestable.
Stocks based in the world’s second largest economy are uninvestable again. Bernstein sales trading desk’s Mark Schilsky said in a note on Monday, “This idea of Chinese stocks being uninvestable has been a recurring theme in the media over the past few wee…
THIS is what it will cost to fight Climate Change
But I know you. You focus on the big picture, what’s practical. So when you look at what it’s going to take globally to fight climate change in terms of who has the money, what their motivations are, and what exactly it’s going to take to unlock those fun…
IPFS, CoinList, and the Filecoin ICO with Juan Benet and Dalton Caldwell
Hey, this is Craig Cannon, and you’re listening to Y Combinator’s podcast. Today’s episode is with Dalton Caldwell, who’s a partner at YC and Wamba Net, who’s the founder of Protocol Labs, a YC company that’s working on IPFS, Filecoin, and CoinList. If y…