yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring polynomials using complex numbers | Khan Academy


2m read
·Nov 10, 2024

We're told that Ahmat tried to write ( x^4 + 5x^2 + 4 ) as a product of linear factors. This is his work, and then they tell us all the steps that he did, and then they say in what step did Ahmad make his first mistake. So pause this video and see if you can figure that out.

All right, now let's work through this together. So we're starting with ( x^4 + 10x^2 + 9 ), and it looks like Ahmad tried to factor that into ( (x^2 + 9)(x^2 + 1) ). And this indeed does make sense because if we said that let's say ( u ) is equal to ( x^2 ), we could rewrite this right over here as ( u^2 + 10u + 9 ). The whole reason why you would do this is so that you could write this higher order expression in terms of a second degree expression.

Then we've learned how to factor things like this many times. We look, and we say, "Okay, what two numbers when I add them I get 10, and when I multiply them I get 9?" It would be 9 and 1. So you could write this as ( (u + 9)(u + 1) ). And of course, if ( u ) is equal to ( x^2 ), this would be ( (x^2 + 9)(x^2 + 1) ), which is exactly what Ahmad has right over here. So step 1 is looking great.

All right, now let's think about what Ahmad did in step two. They didn't do anything to ( x^2 + 9 ), but it looks like they tried to further factor ( x^2 + 1 ). And this does seem right; we just have to remind ourselves, just as you have a difference of squares if you're dealing with non-complex numbers. So we could rewrite this right over here as ( (x + a)(x - a) ).

We could have a sum of squares if we're thinking about complex numbers; this is going to be ( (x + ai)(x - ai) ). And in this situation, well, the ( x ) is ( x ), and then our ( a ) would be 1. So we're going to have ( (x + i)(x - i) ). So step 2 is looking great, and now let's go to step three.

So in step three, there’s no change to this part of the expression, and it looks like Ahmad is trying to factor ( x^2 + 9 ) based on the same principle. Now, ( x^2 + 9 ) is the same thing as ( x^2 + 3^2 ). So if you use this exact same idea here, if you factor it, it should be ( (x + 3i)(x - 3i) ).

But what we see over here is Ahmad took the square root of three instead of just having a three here. Ahmad treated it instead of having a nine here as if we actually had a three. So they made a little bit of an error there. So this is the step where Ahmad makes his first mistake, and we're done.

More Articles

View All
Safari Live - Day 7 | National Geographic
Well, the clouds have broken apart. We have Sapphire Skies and a golden African sun. The siesta is over. This is Safari Live, ready and standing by. 5, 4, 3, 2, 1, you are live! You are [Music] live! Well, good afternoon, everybody! And a warm welcome fr…
Adding 2-digit numbers without regrouping 1 | Addition and subtraction | 1st grade | Khan Academy
Try to pause the video and figure out what 71 plus 24 is. All right, now let’s do this together. So let’s think about what 71 actually means. Well, we have a one in the ones place. Let me make this clear. So this is the ones place and we have one one. So …
More uses for commas | Punctuation | Grammar | Khan Academy
Hello Garian, and hello Paige. Hi David, Paige. I have a question for you. What’s up? You like cheese, don’t you? Well, yes, I do. So Paige, what I’ve just asked you is an example of what’s called a tag question. So I’m making an assertion, and then I’m …
Khan Academy Needs Your Help This Back to School
Hi everyone, Sal Khan here from Khan Academy. I just want to remind everyone that, as we’re going through what’s clearly a very difficult time, especially, well, in the world generally, but especially in education, the entire team here at Khan Academy is…
Crazy BABY Eyes ... and More: IMG! #44
This cow has an illusion face. See the people about to kiss? And oh my gosh, what’s this? Nice. It’s episode 44 of IMG! If you eat too many Pringles you’ll feel like this. And if you look like this, your kids will too. Now, if you look at this right in t…
Are Guitars Worth Investing In? | Walt Grace PT III
People come from all over the world to come here. It’s a destination. You’re not a typical guitar retail store. There’s nothing like this I’ve ever seen. What is this thing in this case? That’s also a Martin. This one is twenty thousand dollars. Uh, yeah,…