yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Future of Human Spaceflight


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

[Music] So, how long before all this becomes reality? How long before interplanetary travel is an everyday affair? Well, as you can imagine, that's a complicated question. It is rocket science, after all.

On May 30th, 2020, SpaceX launched its first crewed mission to the International Space Station. It was the first crewed mission with American crew from American soil in an American spacecraft in a very, very long time. While the contents of the mission weren't anything new, carrying cargo and crew to the ISS, what made this launch so special was that it was the first commercial flight to have done so. All this took place in one of the most trying times humanity has faced in recent history, with protests all across America and a health crisis that has crippled the entire world like never before seen.

The launch still went through, and that means something. The launch, well, it didn't just go on; it was the most widely watched online NASA event in history. While its total viewership still pales in comparison to that of the Apollo 11 launch, nearly one-sixth of the entire world tuned in. Something tells me that we're about to break that record sooner rather than later.

As I just mentioned, SpaceX was the first to commercially do all of this, but what does this mean, and why is that important? Well, it means that NASA is essentially outsourcing the job of innovating and building the rocket to other companies—companies like SpaceX, Blue Origin, Boeing, and so on. They all bid for an opportunity to build, and NASA pays whoever has the best ideas through a contract. In doing so, NASA is taking a lot of the weight off of its underfunded shoulders and is using the powers of the free market to its benefit.

Companies are competing to see who can innovate better, who can create rockets that are faster, more efficient, and cheaper. It's a very important first step to create and maintain a significant presence in low Earth orbit, and that's where the logistics of space travel change significantly.

Low Earth orbit—a popular saying goes that getting to Earth's orbit is halfway to anywhere in the universe. You see, gravity can sometimes be benign; after all, we spend our lives getting used to its effects and sometimes just forget it's there. But when you're dealing with potentially millions of pounds of stuff that needs to be propelled upwards, we have a problem. As soon as we escape gravity, however, things change drastically.

There is quite literally nothing—nothing—to drag you down or up or anywhere for that matter. Just the slightest of pushes can propel you endlessly through the vastness of space. To give you a sense of the impact gravity has on space travel, during the Apollo 11 mission, reaching Earth's orbit took nearly 27 times the propellant compared to the rest of the journey, including re-entry. Earth's gravity is an enduring force, and in this case, a costly one.

The simplest way to get around this problem is to have an outpost in low Earth orbit or somewhere else—an interplanetary pitstop, if you will—where scientists will work, stock up on supplies, and refuel before they embark on their deep space adventures. The International Space Station, humanity's most prominent low Earth orbit presence at the moment, may help us stock up on food and similar supplies, but when it comes to fuel, things get complicated.

We'll have to look a bit further—380,000 kilometers, to be exact. It's a journey we've already made. You see, the moon potentially has everything we need to make propellant: oxygen and hydrogen. And I say potentially because scientists are still not sure about the availability and accessibility of water on the moon. But they do know that lunar dust contains oxygen, which accounts for most of the weight of the propellant.

Anyway, all this means that the moon could become the perfect fuel depot for humans before they head out to further planets such as Mars. Given launches from the moon only have to fight 1/6 of the Earth's gravity, this crucial step has seen promising progress in the last few years, with numerous companies already looking into technologies that could help astronauts...

More Articles

View All
Giant Underwater Cave Was Hiding Oldest Human Skeleton in the Americas | Expedition Raw
ALBERTO NAVA: I mean, you’re always looking for something new to discover, but we didn’t know what we were going to find when we started on that day. Most of our dives are pretty routine, you know, you just keep finding more tunnels and more tunnels. But …
THE FEDERAL RESERVE JUST FLIPPED | Major Changes Explained
What’s up guys, it’s Graham here. So this is big. After more than a year of patiently waiting, the Federal Reserve has just officially paused their rate hikes for the first time since March of 2022, marking the beginning of a brand new market cycle that’s…
Partial sums: formula for nth term from partial sum | Series | AP Calculus BC | Khan Academy
Partial sum of the series we’re going from one to infinity summing it up of a sub n is given by, and they tell us the formula for the sum of the first n terms. They say write a rule for what the actual nth term is going to be. Now to help us with this, l…
The Last Days of the Romanovs | National Geographic
I think it’s a big tragedy, big tragedy for the country and for the world. For 300 years, the Romanovs ruled Russia as czars—loved, feared, revered, respected. But all too often, those who fly highest fall furthest. World War One brought Russia to revolut…
Why Indifference is Power | Priceless Benefits of Being Indifferent
Many centuries ago, Alexander the Great decided to visit a philosopher named Diogenes, who lived in the city of Corinth. At the time, many philosophers and statesmen were eager to visit the ancient Greek king of Macedon, but Diogenes didn’t show the sligh…
Worked example: sequence recursive formula | Series | AP Calculus BC | Khan Academy
A sequence is defined recursively as follows: so a sub n is equal to a sub n minus 1 times a sub n minus 2. Or another way of thinking about it, the nth term is equal to the n minus 1 term times the n minus 2th term. With this, the zeroth term, or a sub …