yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
The Most Terrifying Thought Experiment: Roko's Basilisk
If you knew you’d be subjected to eternal torture because you didn’t do something, you’d do it right. What if that something was aiding in the development of super intelligent AI? Would you still step up and help? The question is presented in one of the m…
Safari Live - Day 35 | National Geographic
Big pigs of youngsters that would explain the very excited behavior between them. Wonderful, right? Well, it’s not just the warthogs and myself and a man who that are joining you this afternoon. Jamie and Craig are in the other car, and they are heading u…
Making conclusions in a test about a proportion | AP Statistics | Khan Academy
A public opinion survey investigated whether a majority, more than 50 percent, of adults supported a tax increase to help fund the local school system. A random sample of 200 adults showed that 113 of those sampled supported the tax increase. Researchers …
Writing functions with exponential decay | Algebra 1 | Khan Academy
We are told a phone sells for six hundred dollars and loses 25% of its value per year. Write a function that gives the phone’s value ( v(t) ) so value is a function of time ( t ) years after it is sold. So pause this video and have a go of that before we …
Assassination politics: Not inevitable
In my previous video, I described Jim Bell’s idea of assassination politics and said that I agreed with him that the emergence of such a system seemed inevitable. Thanks to the user, peace requires anarchy. I’ve since read an article by Bob Murphy, which …
JEFF VS. ADAM: Nerd Wars!
It’s a nerd force! Oh good, what style are we doing it now? Alright, so welcome to Nerds War. There’s a very special Nerds War. We didn’t prep because I sliced my finger—[ __ ] oh um, so we’re doing a Nerds War extreme! Adam vs. Jeff! Said, I’m playing A…