yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
The Emotional Journey of Photos | National Geographic
There have been moments when I’ve been out shooting landscapes where I’ve cried because there’s things in front of me that I just can’t believe are even real. So this competition stands out for me because I think it’s just so important to love what you do…
Why your passwords suck..
Passwords are a string of nonsensical characters that separate us from our finances, our medical records, our school information, our entire digital life. It’s amazing how much power these random characters hold over us, how much they can do. How a simple…
Interpreting definite integral as net change | AP Calculus AB | Khan Academy
In a previous video, we start to get an intuition for rate curves and what the area under a rate curve represents. For example, this rate curve might represent the speed of a car and how the speed of a car is changing with respect to time. This shows us t…
This is the BEST skill you can learn to make more money
What’s up you guys, it’s Graham here. So I’m going to be sharing with you guys the most important thing that you should learn if you want to increase your business and start making more money, and that is learning how to sell. This is one of the most impo…
Believe the no, but not the why.
There are a couple pieces of advice that we give to YC founders when talking to investors. I think the first is: believe the “no,” but don’t believe the “why.” You’re going to get a lot of “no”s when pitching, and more often than not, the investor will no…
The Moon
When you look at the Moon in the night sky, it might seem reasonably close, but it’s actually incredibly far away. Right over here is a scaled picture of the distance between the Earth and the Moon. Earth has a diameter of approximately 8,000 miles, while…