yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
With Love, To The Moon
It’s night time. Work is over, dinner has been eaten, and you’re just about to go to bed. You lay down for a short while, but your mind decides it’s not done with the day just yet. You think you let ideas run their course, but you are still not tired. You…
Inductor equations
Now we’re going to talk about the two forms of the inductor equation and get familiar with these things. I’m going to do some examples to show you how the inductor equations work. So we know that the inductor equation is the voltage across an inductor is…
This Tiny Beetle Is Devastating Forests in the Worst Outbreak Ever | Short Film Showcase
[Music] Not too long ago, I was really beginning to lose a lot of hope for her, for us. I was just seeing so many bad changes because they’re under attack. I became interested in nature before I could walk. I was out camping, obviously very low to the gro…
In the Same Boat | Port Protection
Yeah, let’s put the bow right up against her. Port protection main state Timothy Curly leech and newest resident Amanda Ma are getting Curly’s vessel, the little Pelican, ready to go hbit fishing. “My boat is one of the most important things that I own. …
Photoperiodism | Plant Biology | Khan Academy
So one question that biologists have long asked is: how do plants know what to do at different times of the year? One mechanism by which they know, kind of, you could say what time of year it is, is through photoperiodism. “Photo” for light and then “peri…
Is this the coolest office? pt 2
Is one of my favorites here, which is “Atlas Shrugged” by Ayn Rand. She’s one of my favorite authors. Another book down here is from Tony Robbins. Moving on to this desk, it was at a secret office that one of the prime ministers used when they were in of…