yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
Atomic Habits: Small Changes, Big Results
11 seconds. It doesn’t seem like a lot of time, does it? In fact, you’ve already been watching this video for about 11 seconds. If you are running and I ask you to run 11 seconds faster per mile, could you do it? Probably, because 11 seconds isn’t that mu…
How to be Stoic in a Crisis
When a crisis is upon us, how can we deal with it in a Stoic way? When we look at Stoic literature, we’ll find some good advice that we can apply during times of hardship. Crises come in many different forms. We can have personal crises on a micro level, …
Simpson's index of diversity | Ecology | AP Biology | Khan Academy
So in this table here, we have two different communities: Community One and Community Two. Each of them contains three different species, and we see the populations of those three different species. We also see that the total number of individuals in each…
Daily Eccentric Habits of Kevin O’Leary
[Music] Everybody asking all the time, how do you keep everything moving forward when you’re traveling all over the place? This is a good example. I’m out in California here at the Sony lot, shooting season 11 of Shark Tank. Now, this is pretty industrio…
Daily Live Homeroom With Sal: Monday, April 13
Hi everyone! Sal Khan here. Welcome to our daily homeroom livestream. As I always explain, this is a way for us to stay together, connected in this time of school closures. Khan Academy, we’re not-for-profit, with a mission of providing a free, world-clas…
Dividing polynomials by linear expressions: missing term | Algebra 2 | Khan Academy
In front of us, we have another screenshot from Khan Academy, and I’ve modified a little bit so I have a little bit of extra space. It says, “Divide the polynomials. The form of your answer should either be a straight-up polynomial or a polynomial plus th…