yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
Take a Ride on One of India's Legendary Mountain Railways | National Geographic
[Music] The rugged mountainous terrain of India contains unmatched adventure. Their three historic railways are grouped into a single World Heritage site known as the Mountain Railways of India. The Darjeeling Himalayan Railway, the Nilgiri Mountain Railw…
Indonesia's Coral Reefs - 360 | Into Water
Oceans are critical to keeping our global ecosystem in balance. They are home to hundreds of thousands of species, many of which are under threat. There are millions of people whose day-to-day survival depends on their continued health. [Music] My connec…
This Duck Has a Foot Growing On Its Head - Smarter Every Day 25
Hey, it’s me Destin. This week I’ve been in the lab, or my garage, working on my thesis. So, I’m trying to finish it, so I can’t give you an awesome video this week. To hold you over, I’ll give you some video of when me and my daughter went to the fair an…
HOW TO BUY: Bitcoin, Litecoin, and Ethereum (Step by Step)
What’s up you guys! It’s Gran here. So, this has been something that has been requested in the hundreds of times. People have been hitting me up on Snapchat, on Instagram, and many, many times in the comments, asking how to go about buying Bitcoin, Liteco…
The Physics of Slingshots, with Jörg - Smarter Every Day 31
Hey, it’s me, Destin. Welcome to Smarter Every Day. Today we— (Jörg) Nope. [Chuckles] Welcome to the Slingshot Channel. Laughs As you can see, today I’ve been taken over by Germans. We’re going to look at slingshots today. The physics of slingshots. So wh…
HOW TO: Animated Wallpaper! -- Up All Knight #6
Vsauce. Michael here with a new episode of “Up All Knight.” Vsauce. Michael here today with a new episode of “Up All Knight,” a show where I cover cool, geeky trick things. For instance, we all know Yahoo.com, but do you know what happens when you click …