yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
A collection of my best advice on meditation
I’m so glad that some of our conversations are on meditation. I have a number of questions that I get on meditation. Uh, what type? There are just many, many, many types of meditation, and I suppose they’re probably almost all good. I’ve only experienced…
Michael Burry Warns of Greatest Stock Market Bubble EVER
Well, Michael Burry is back, baby! I thought he was gone forever. And we just have to follow him through the Scion Asset Management 13Fs from now on. However, he is back! His Twitter is back online, at least for now, and he has some pretty interesting thi…
Scarcity and rivalry | Basic Economic Concepts | Microeconomics | Khan Academy
What we’re going to do in this video is talk about two related ideas that are really the foundations of economics: the idea of scarcity and the idea of rivalry. Now in other videos, we do a deep dive into what scarcity is, but just as a review in everyda…
Simulating a beehive with for loops | Intro to CS - Python | Khan Academy
Let’s design a simulation with for loops. We want to answer the question: How much honey does a beehive produce over a certain period of time? Now, there are a lot of variables that might impact honey production, like the geography, the weather, and what…
Returning to Her Roots | Jane: The Hope
[music playing] JANE GOODALL: When I first went to Gombe, it was the most amazing time of my life. DR. ANTHONY COLLINS: One of the things which is important for her is to get away and retouch her roots. JANE GOODALL: Have to go this side. DR. ANTHONY …
How Engineers Hack Cameras to Photograph and Study Sharks and Lions | National Geographic
[Music] [Music] Crittercam was an animal-born imaging device. It’s basically a camera plus a bunch of sensors for collecting scientific data as well as point-of-view imagery. This was the first HD Crittercam we actually made. We built that camera in like …