yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Graphing y=-cos(π⋅x)+1.5 | Trigonometry | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We're told to graph ( y ) is equal to negative cosine of ( \pi ) times ( x ) plus ( 1.5 ) in the interactive widget, so pause this video and think about how you would do that.

And just to explain how this widget works, if you're trying to do it on Khan Academy, this dot right over here helps to find the midline. You can move that up and down, and then this one right over here is a neighboring extreme point, so either a minimum or a maximum point.

So there's a couple of ways that we can approach this. First of all, let's just think about what cosine of ( \pi x ) looks like, and then we'll think about what the negative does in the plus ( 1.5 ).

So cosine of ( \pi x ), when ( x ) is equal to zero, ( \pi ) times zero is just going to be zero. Cosine of zero is equal to one, and if we're just talking about cosine of ( \pi x ), that's going to be a maximum point when you hit one. Just cosine of ( \pi x ) would oscillate between ( 1 ) and ( -1 ).

And then what would its period be if we're talking about cosine of ( \pi x )? Well, you might remember one way to think about the period is to take ( 2\pi ) and divide it by whatever the coefficient is on the ( x ) right over here. So ( 2\pi ) divided by ( \pi ) would tell us that we have a period of ( 2 ).

And so how do we construct a period of ( 2 ) here? Well, that means that as we start here at ( x = 0 ), we're at ( 1 ). We want to get back to that maximum point by the time ( x ) is equal to ( 2 ).

So let me see how I can do that. If I were to squeeze it a little bit, that looks pretty good. And the reason why I worked on this midline point is I liked having this maximum point at ( 1 ) when ( x ) is equal to ( 0 ) because we said cosine of ( \pi ) times ( 0 ) should be equal to ( 1 ).

So that's why I'm just manipulating this other point in order to set the period right, but this looks right. We're going from this maximum point, we're going all the way down and then back to that maximum point, and it looks like our period is indeed ( 2 ).

So this is what the graph of cosine of ( \pi x ) would look like. Now what about this negative sign? Well, the negative would essentially flip it around, so instead of whenever we're equaling ( 1 ), we should be equal to ( -1 ).

And every time we're equal to ( -1 ), we should be equal to ( 1 ). So what I could do is I could just take that and then bring it down here, and there you have it, I flipped it around. So this is the graph of ( y = -\cos(\pi x) ).

And then last but not least, we have this plus ( 1.5 ), so that's just going to shift everything up by ( 1.5 ). So I'm just going to shift everything up by ( 1.5 ) and shift it up by ( 1.5 ), and there you have it.

That is the graph of ( -\cos(\pi x) + 1.5 ), and you can validate that that's our midline. We're still oscillating one above and one below the negative sign. When cosine of ( \pi ) times zero, that should be ( 1 ), but then you take the negative, we get to ( -1 ). You add ( 1.5 ) to that, you get to positive ( 0.5 ), and so this is all looking quite good.

More Articles

View All
Why I'm ALWAYS broke by the end of the year…$300,000 gone
What’s up, you guys? It’s Graham here. So, this is this weird investment strategy and mindset I’ve been practicing since 2011. Now, maybe it’s a little bit weird, and maybe it’s a little bit risky, and maybe it’s a little bit stupid, but this has been wor…
Comparison: Rise of empires | World History | Khan Academy
What we’re going to do in this video is think about the rise of empires and make the comparison with four very early empires that we have studied: Achaemenid Persia, the Maurya Empire in India, Han China, and the Roman Empire. So let’s just start with a …
Imploding Drum
Today I’m at the University of Sydney with Dr. Phil, and we’re talking about the pressure that all of us are under. You are under a lot of pressure, probably 10,000 kg. 10,000 kg is pressing in on my whole body, all from all sides. Where does all this pre…
London dispersion forces | Intermolecular forces and properties | AP Chemistry | Khan Academy
What we’re going to do in this video is start talking about forces that exist between even neutral atoms or neutral molecules. The first of these intermolecular forces we will talk about are London dispersion forces. So it sounds very fancy, but it’s actu…
5 (tech) items that boosted my productivity
Hi guys, it’s me Dudi. Today we’re gonna talk about five tech items that boosted my productivity. You don’t need to buy all of them in order to increase your productivity, but they’re great tools that I use for a long period of time and I really enjoyed. …
How to Build Success by Doing Easy Things (Animation)
This video is a collaboration with Beautiful Science. Be sure to check out their incredible channel after the video. So, if you’re like most people, you’ve had a vision of your potential future self. The more successful, better-groomed, richer, happier v…