yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conclusion for a two sample t test using a P value


2m read
·Nov 10, 2024

We're told a sociologist studying fertility in Argentina and Bolivia wanted to test if there was a difference in the average number of babies women in each country have. The sociologist obtained a random sample of women from each country. Here are the results of their test.

So they take a sample of 75 women in Argentina, and these women had a mean of 2.4 babies each, with a standard deviation of 1.5. Then the standard error of the mean was 0.17. Then they calculated similar statistics for Bolivia.

Then they give us the t-test for the means being different. We were able to calculate these statistics, and they say assume that all conditions for inference have been met at the alpha equals 0.05 level of significance. Is there sufficient evidence to conclude that there is a difference in the average number of babies women in each country have?

So pause this video and see if you can answer that.

All right, now let's work through this together. So this is classic hypothesis testing right over here, where your null hypothesis is actually going to be that your means are the same—so that the mean in Argentina is equal to the mean in Bolivia.

And then your alternative hypothesis is that your means are different. What you do is you say, all right, if we assume the null hypothesis, what is the probability that we would have gotten means this far apart? That's what our p-value tells us. We have a 0.31 probability, or 31 percent probability, of getting means this far apart.

Now, if your probability, assuming the null hypothesis, is below your level of significance, your alpha right over here, then you would say all right, that seems like such a low probability. I'll reject the null hypothesis, which suggests the alternative hypothesis.

But in this situation here, if we compare our p to our alpha, we see that our p-value is for sure greater than our alpha. So in this situation, I mean, you could see it right over here: 0.31 is for sure greater than 0.05.

So in this situation, we cannot reject the null hypothesis. Cannot reject our null hypothesis, and so there is not sufficient evidence to conclude that there is a difference in the average number of babies women in each country have.

More Articles

View All
To everyone that says “Spend your money NOW! You might not be alive tomorrow!”
You don’t need money and things to be fulfilled because once you escape that mindset, you realize that there is no price to happiness because it was free all along. What’s up, you guys? It’s Graham here. So, gonna go a little bit more personal and maybe …
Graphing square and cube root functions | Algebra 2 | Khan academy
We’re told the graph of ( y ) is equal to (\sqrt{x}) is shown below. Fair enough, which of the following is the graph of ( y ) is equal to ( 2\times\sqrt{-x}-1 )? They give us some choices here, and so I encourage you to pause this video and try to figure…
Introduction to proportional relationships | 7th grade | Khan Academy
In this video, we are going to talk about proportional relationships, and these are relationships between two variables where the ratio between the variables is equivalent. Now, if that sounds complex or a little bit fancy, it’ll hopefully seem a little b…
Carolynn Levy - Modern Startup Funding
I like Kevin said, I’m going to talk about modern startup financing. I have only been practicing law for 21 years, so what’s old and what’s new only spans that timeframe for me. But I’ve seen a lot of changes to the startup ecosystem. YC has been a big pa…
why starting a youtube is a brilliant idea (even if no one watches)
You’re posting on YouTube, spending hours on your content, and barely getting any views or subscribers. You’re probably wondering, “Why the hell am I even bothering?” Maybe you’re looking at other creators and seeing them grow way faster, and it’s got you…
Office Hours With Sal: Monday, March 16 Livestream From Homeroom
Hello Facebook and Twitter and now YouTube. Okay, thanks. Uh, uh, hello everyone! Asal here and, uh, so as promised, uh, we are going to continue with these daily live streams. Given all of the school closures that are happening around the country and aro…