yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conclusion for a two sample t test using a P value


2m read
·Nov 10, 2024

We're told a sociologist studying fertility in Argentina and Bolivia wanted to test if there was a difference in the average number of babies women in each country have. The sociologist obtained a random sample of women from each country. Here are the results of their test.

So they take a sample of 75 women in Argentina, and these women had a mean of 2.4 babies each, with a standard deviation of 1.5. Then the standard error of the mean was 0.17. Then they calculated similar statistics for Bolivia.

Then they give us the t-test for the means being different. We were able to calculate these statistics, and they say assume that all conditions for inference have been met at the alpha equals 0.05 level of significance. Is there sufficient evidence to conclude that there is a difference in the average number of babies women in each country have?

So pause this video and see if you can answer that.

All right, now let's work through this together. So this is classic hypothesis testing right over here, where your null hypothesis is actually going to be that your means are the same—so that the mean in Argentina is equal to the mean in Bolivia.

And then your alternative hypothesis is that your means are different. What you do is you say, all right, if we assume the null hypothesis, what is the probability that we would have gotten means this far apart? That's what our p-value tells us. We have a 0.31 probability, or 31 percent probability, of getting means this far apart.

Now, if your probability, assuming the null hypothesis, is below your level of significance, your alpha right over here, then you would say all right, that seems like such a low probability. I'll reject the null hypothesis, which suggests the alternative hypothesis.

But in this situation here, if we compare our p to our alpha, we see that our p-value is for sure greater than our alpha. So in this situation, I mean, you could see it right over here: 0.31 is for sure greater than 0.05.

So in this situation, we cannot reject the null hypothesis. Cannot reject our null hypothesis, and so there is not sufficient evidence to conclude that there is a difference in the average number of babies women in each country have.

More Articles

View All
Living In Accordance With Nature | A Stoic's Ultimate Goal
[Music] The ancient Stoics argued that living a virtuous life means living in accordance with nature. Now, what did they exactly mean by this? Are we to follow our instincts like animals do, or perhaps should we live a nature-friendly lifestyle? In this …
How to Fix a Leaky Wooden Boat | Primal Survivor
NARRATOR: The boats may look simple, but their design is intricate and complex. Ta’u boatbuilders journey deep into the forest– [non-english speech] –to find the 11 different species of tree needed to make a [non-english]. Centuries of experience go into …
Homeroom with Sal & Vas Narasimhan - Wednesday, July 8
Hi everyone! Welcome to our homeroom live stream. I’m very excited about the conversation we’re going to have in a few minutes. But before that, I will give my standard announcement: a reminder that Khan Academy is a not-for-profit organization with a mis…
A Nat Geo Earth Day Adventure | Branching Out | Trailer
April is Earth Month, a time to celebrate our commitment to the natural world. Our behavior impacts so many species on this planet, and it’s even threatening the habitats that we humans call home. Believe me, I’ve seen it. This island and this beach went …
Lunch On Board The Hot Tuna | Wicked Tuna: Outer Banks
We’re bite chasers today. The strategy today is going to be tackle the guy with the ball. If we hear someone’s marking or someone’s getting bit, we’re beelining right for them. Right now, the clock is ticking. Whoever’s on the meat is getting mugged today…
Kevin O'Leary V2
Actually, I was born Terrence Thomas Kevin O’Leary. My dad was Irish and he loved long names, but when they got me home, everybody realized it was going to be total confusion because dad was named Terry too. So the next thing I knew, I was Kevin. Two year…