yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivative of a parametric function


3m read
·Nov 11, 2024

So what we have here is X being defined in terms of T, and Y being defined in terms of T. Then, if you were to plot over all of the T values, you get a pretty cool plot just like this. So, you know, you try T equals z, figure out what X and Y are; T is equal to one, figure out what X and Y are; and all the other T's, and then you get this pretty cool looking graph.

But our goal in this video isn't just to appreciate the coolness of graphs or curves defined by parametric equations. We actually want to do some calculus, and in particular, we want to find the derivative. We want to find the derivative of y with respect to X, the derivative of y with respect to X when T is equal to 13.

If you are inspired, I encourage you to pause and try to solve this, and I am about to do it with you in case you already did or you just want me to. Alright, so the key is, well, how do you find the derivative with respect to X?

The derivative of y with respect to X, when they're both defined in terms of T, and the key realization is the derivative of y with respect to X is going to be equal to the derivative of y with respect to T over the derivative of x with respect to T. If you were to view these differentials as numbers, well, this would actually work out mathematically. Now, it gets a little bit non-rigorous when you start to do that, but if you thought of it that way, it’s an easy way of thinking about why this actually might make sense.

The derivative of something versus something else is equal to the derivative of y with respect to T over x with respect to T. Alright, so how does that help us? Well, we can figure out the derivative of x with respect to T and the derivative of y with respect to T.

The derivative of x with respect to T is just going to be equal to, let's see, the derivative of the outside with respect to the inside. It's going to be 2s—whoops, derivative of s is cosine 2 cosine of 1 + 3T times the derivative of the inside with respect to T. So that's going to be the derivative of one, which is just zero, and the derivative of 3T with respect to T is three, so times 3, that's the derivative of x with respect to T.

I just used the chain rule here, derivative of the outside to s of something with respect to the inside. So, derivative of this outside two s of something with respect to 1 + 3T is that right over there, and the derivative of the inside with respect to T is just R3.

Now, derivative of y with respect to T is a little bit more straightforward. The derivative of y with respect to T we just apply the power rule here: 3 * 2 is 6t to the 3 - 1 power, 6t^2. So this is going to be equal to 6t^2 over, well, we have the 2 * 3, so we have 6 * sine of 1 + 3T.

Then our sixes cancel out, and we are left with t^2 over sine of 1 + 3T. If we care when T is equal to 13, when T is equal to -1/3, this is going to be equal to, well, this is going to be equal to 1/3 times 2ar - 1/3 squared over the cosine of 1 + 3 * 1/3.

Is 1, so it's 1 + 1, so it's the cosine of 0, and the cosine of 0 is just going to be one. So this is going to be equal to positive, positive 1.

Now, let’s see if we can visualize what's going on here. So let me draw a little table here. I’m going to plot, I’m going to think about T, X, and Y. So T, X, and Y.

When T is equal to -13, well, our X is going to be, this is going to be sine of zero, so our X is going to be zero, and our Y is going to be, what, -2 over 27? So we're talking about the point (0, -2 over 27).

So that is that point right over there, so that's the point where we're trying to find the slope of the tangent line, and it's telling us that that slope is 1. So, if we move—I guess one way to think about it is, if we move 4, 1, 2, 3, 4 and half, we're going to move up half.

So if I wanted to draw the tangent line right there, it would look something like that—something, something, something like that. Let’s see—if we go one, two, three, four, and a half, so yeah, just like that. It’s pretty close.

So that's what we just figured out. We figured out that the slope of the tangent line right at that point is 1. So it's not only neat to look at, but I guess somewhat useful.

More Articles

View All
Vietnam POW Escape | No Man Left Behind
I certainly remember the day I got shot down: the 6th of June, 1964. The ocean government had requested a show of support from the United States. We were tasked to go in and fly some missions over there as a kind of a show of force. The last pass, the la…
10 Skills That AI Made Useless
A couple of years ago we said that in the future factories would just have a human to take care of the robots and a dog to take care of the human. You call us crazy, but here we are. The age of AI is finally upon us. You ignored that video back then; let’…
Debating Finance Junkies | Ponzi Factor | V-Log 6
Hi, this is Todd. Thank you for joining me once again for my last and final V log of the year. First, I want to apologize for being absent for so long. The last one I did was on the SP500 from almost two months ago. Unfortunately, I’m not gonna do a conti…
15 Money Secrets They Don't Teach You In School
The school system is designed to keep people poor and mediocre. It was never designed so you could become rich and live a life full of prosperity. It was designed to raise employees that are obedient and never dream big. And if you want to change that pro…
Stop Wanting, Start Accepting | The Philosophy of Marcus Aurelius
Although he never considered himself a philosopher, Marcus Aurelius’ writings have become one of the most significant ancient Stoic scriptures. His ‘Meditations’ contain a series of notes to himself based on Stoic ideas, one of which is embracing fate and…
How I built a private jet in my office!
14 years ago, I had to come up with the idea of how to build the best showroom in the world. But the biggest issue was, what the hell do I put inside the window of this showroom? I had to make sure that people looking in from the window outside didn’t thi…