yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

States of Matter


3m read
·Nov 10, 2024

So I wanted to talk to people about the different states of matter: solid, liquid, and gas, using water as an example. But I thought first I better be sure that we're all on the same page about what water is made of. What's water made of? Water? Yeah, what makes water, um, water? Okay, what elements does it take to make water? H2O. So what does that mean? That it's water? What elements? Water and cold water? Plus cold? But what does the H and the O mean? Uh, um, something in oxygen? Something in oxygen? Hydrogen! There you go! Hydrogen and oxygen. What's the two mean? Hydrogen, oxygen, and the two H2O. Why do we say two? Uh, I don't know. It's two poles of hydrogen and one of oxygen. There you go! So that makes what we call a water compound. Two atoms of hydrogen and one atom of oxygen make a water molecule.

I know the word was like on the tip of your tongue. I guess we got there in the end. So what's the difference between solid and liquid water? Uh, so the obviously the temperature of it. It's a lot colder. Um, ice is frozen. What does it mean to be frozen then? Cold. Cold liquid water is no good for skating on; ice is great. Nothing other than temperature. So everyone recognizes that temperature is important in determining whether the water is ice or liquid. But what's actually happening between the water molecules?

What's the difference between water and ice? It's frozen. What does it mean for something to be frozen? It's solid. What does it mean for something to be solid? That it's like a brick. It's like a brick. And what makes it like a brick? What's happening in there? I don't know. But what makes it a solid versus a liquid? Well, in this case, lots of pipes going underneath, but that makes it very cold. Makes it very, very cold. Yeah, but what's actually happening to the little bits of water? They're attaching to each other. They attach. They're attaching. This is all with guesswork here. I imagine they're attaching to each other. They're forming a more solid enterprise. You cool liquid water down, and then at some point, what happens to it?

Oh, it slows down, freezes, and stops moving. The molecules become frozen. How do they become frozen? They join together. They, uh, accumulate. They coagulate. Coagulate is not the technical term for it, but everyone was on the right track. In ice, the water molecules are basically fixed in place. They form a crystal lattice where their only motion is vibrating.

So what happens if we heat up the ice? Like, what happens when, like, a solid melts? Um, they all bounce out. And what do we— we talking about M? What, what is there? What are they doing? Well, like in science, you draw little circles. What are those little circles? Oxygen? Are they just oxygen? Hydrogen? Oxygen, and the two, and the two? The temperature is higher, so the particles, they're less stable. Less stable? Not stable? Less more free to move around. That sounds right. They become separate, and they are allowed to move around. And in gas, maybe they're further apart? Is that what we're— okay, this—fantastic! This guy nailed it!

All right, that makes sense. That's awesome. All right, so in liquid water, the water molecules not only vibrate, they can also rotate and slide past each other. And this is what allows the substance to flow. At even higher temperatures, the water molecules become free of that liquid and turn into water vapor. In that state, they are very, very far apart and moving very quickly.

So the major differences between solid, liquid, and gas are the motion of the particles and the distance between them. Of course, you may want to meditate on these differences some more. Oh, what about the difference between a solid, a liquid, and a gas? Oh, that's easy. I teach meditation, and it's all about the, um— as you de-excite something, so you de-excite the mind, you get more orderliness. As you de-excite water vapor, you get water. As you de-excite water, you get ice. More orderly.

So in fact, the molecular structure becomes more orderly. That's the difference. Sounds quite reasonable. How do you de-excite something? Well, in this case, you actually remove energy from it. In human beings, you calm their minds down with meditation, and that works. We get the excited. Does that mean if I meditate too much I might turn into ice, though? No, but you'll generally become cool. Good answer, sir. Thank you so much.

More Articles

View All
Warren Buffett on How to Calculate Intrinsic Value of a Stock
I mean, if somebody shows us a business, you know, the first thing that goes through our head is: would we rather own this business than more Coca-Cola? Would we rather own it than more Gillette? Now, it’s crazy not to compare it to things that you’re ver…
Climate Change: It’s Real. It’s Serious. And it’s up to us to Solve it. | National Geographic
Climate change. It’s real, it’s serious, and it’s up to us to solve it. In the last two decades, we’ve experienced 14 of the hottest 15 years on record. By 2050, drought and chronic water shortages could impact a billion people, while millions more will …
Introduction to Ratios
We’ve got some apples here, and we’ve got some oranges, and what I want to think about is what is the ratio? What is the ratio of apples to oranges? To clarify what we’re even talking about, a ratio is giving us the relationship between quantities of two…
15 Ways People Are Wasting Your Time
Guess what, Aluxer? People waste your time a lot of the time. You may notice sooner rather than later. You might only notice once they’ve taken a big chunk of it. And the worst, you may never notice. You might be giving your time and effort to people who …
The Fourth Amendment | National Constitution Center | Khan Academy
Hey, this is Kim from Khan Academy, and today I’m talking with some experts about the Fourth Amendment. This is the Fourth Amendment of the Bill of Rights, and the Fourth Amendment deals with unreasonable search and seizure. So here’s the official text o…
The Crux Episode 1 | Full Episode | National Geographic
Traditionally, climbers are seen as very friendly, lovely people. I love the climbing community, and it’s just so beautiful. Everyone in the competitions really feels like close friends to me; I love the atmosphere. I love the camaraderie. I love my teamm…