yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to make a black hole | NASA's Michelle Thaller | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

So Mark, you have a great question about black holes: Is there a minimum mass needed for a black hole to form and does a black hole form whenever a stellar object gets that dense?

To begin with, let's talk about the definition of a black hole. Now, most commonly people talk about black holes as being a consequence of a giant star dying. And the idea is that a star has this huge mass and that's a lot of gravity crushing the star together.

Now, when the star is alive and there are fusion reactions going on inside the core, that crush of gravity is actually held up. But once the star dies and the fusion reactions go away the gravity crushes inward and there's nothing to support it anymore. So basically gravity becomes so strong in that object that not even light can escape and therefore we call it a black hole.

That's probably the most classic way to make a black hole, is you actually make it from the core of a dead star that's collapsing. But you might be surprised to learn that we actually think there are other ways to make a black hole. And the real answer to your question is that there is no minimum mass needed for a black hole, you just need to have the right density for an object's gravity to be so intense that light can't escape.

The universe is very good at making black holes that are about the size of stars; it's an easy way to get them. But the universe makes black holes in other ways too. We actually think there are black holes being generated all around us on very, very small scales. There are things called high-energy cosmic rays — very, very energetic particles that slam into our atmosphere from space.

These slam in with enough energy that we think they actually create tiny black holes, black holes that have the mass only a couple of atoms. There's enough energy to cram that matter together so much they form little black holes. One of the things that we're doing at CERN, which is actually the largest particle accelerator on the earth right now, is trying to get up to those densities.

CERN actually does want to make artificial black holes. Actually have two particles collide so intensely that they pop off a little black hole. And before you ask the question — no this is not dangerous. CERN does not get up to energies anywhere near what's happening in the natural world. These high-energy particles from space are much more energetic than CERN could ever do.

So if anything dangerous was going to happen, it would already have happened. These tiny little black holes we think don't live very long, maybe even a millionth of a second. The whole point will be to detect them at all. All you need is a certain amount of mass and a certain amount of volume.

It doesn't matter how much mass and you'll get a black hole. For example, if you could actually crush the entire Earth into the size of a ping-pong ball that would be a black hole. But now let me tell you that things go the other way too. We know black holes that are much, much more massive than stars.

There are things called supermassive black holes that are millions or billions of times the mass of the Sun. We see these in the center of galaxies all around us. And quite honestly, one of the biggest questions in astronomy right now is how do these giant black holes form?

Because we see them so far away in space, we see them in galaxies that are 10 billion light years away and that means that 10 billion years ago when the universe wasn't very old you already had black holes that were billions of times the mass of the Sun. Now, those supermassive black holes are really interesting because remember I told you the whole point is getting the right density for a black hole.

It doesn't really matter how much matter there is. Intriguingly, these giant black holes are actually not very dense, on average. If you had a black hole that was about 4 million times the mass of the Sun, the diameter of that black hole would be about the orbit of where Jupiter is in our solar system and the average density of it, across that whole volume, would be about the same as water. So how is it...

More Articles

View All
A Gun Seizure at Miami International Airport | To Catch a Smuggler
[music playing] OFFICER HERNANDEZ: We’re going to have to take this back to the office. Yeah. That box will not be going to its final destination. I appreciate you carrying the heavy stuff. OFFICER HERNANDEZ: So when it comes to firearms in particular, …
Inside Japan’s Earthquake Simulator
This is the world’s largest earthquake simulator. It’s called E-Defense. Its huge shake table can support a 10-story building and then move it in all directions with the force of the world’s most destructive earthquakes. E-Defense has conducted more than …
Wildlife Disappearing at the Border | National Geographic
[Music] This wildlife refuge was established for the protection of native fishes. Eight species of native Rio Yaki fishes. [Music] The jaguar occurs in the Rio Yaki down all of these drainages. Now these drainages are completely dammed up. We’re going to …
The Stock Market's Valuation is Getting Ridiculous...
It’s no secret that the stock market is currently overvalued, but what should we as investors do about it? I have a look at this chart, which is tracking a metric called the Shiller PE. This metric was created by the American economist Robert Shiller, who…
Why Sharks Attack Cage Divers | Shark Attack Files
It’s a mystery. Great whites around the world have been attacking divers in cages. No one knows why this is frightening. Finally, Dr. Greg Scomo may have cracked the case. He thinks the sharks are chasing bait; they want to tease these sharks in tight to …
Animal Life in the Forest Canopy - Meet the Expert | National Geographic
And welcome back to the channel! We are live yet again for our fifth Meet the Expert. Oh boy, what a journey we have been on! We’ve been down deep into the ocean, we’ve met with experts who study bears, we’ve been out in Hungary to see venomous snakes, we…