yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to make a black hole | NASA's Michelle Thaller | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

So Mark, you have a great question about black holes: Is there a minimum mass needed for a black hole to form and does a black hole form whenever a stellar object gets that dense?

To begin with, let's talk about the definition of a black hole. Now, most commonly people talk about black holes as being a consequence of a giant star dying. And the idea is that a star has this huge mass and that's a lot of gravity crushing the star together.

Now, when the star is alive and there are fusion reactions going on inside the core, that crush of gravity is actually held up. But once the star dies and the fusion reactions go away the gravity crushes inward and there's nothing to support it anymore. So basically gravity becomes so strong in that object that not even light can escape and therefore we call it a black hole.

That's probably the most classic way to make a black hole, is you actually make it from the core of a dead star that's collapsing. But you might be surprised to learn that we actually think there are other ways to make a black hole. And the real answer to your question is that there is no minimum mass needed for a black hole, you just need to have the right density for an object's gravity to be so intense that light can't escape.

The universe is very good at making black holes that are about the size of stars; it's an easy way to get them. But the universe makes black holes in other ways too. We actually think there are black holes being generated all around us on very, very small scales. There are things called high-energy cosmic rays — very, very energetic particles that slam into our atmosphere from space.

These slam in with enough energy that we think they actually create tiny black holes, black holes that have the mass only a couple of atoms. There's enough energy to cram that matter together so much they form little black holes. One of the things that we're doing at CERN, which is actually the largest particle accelerator on the earth right now, is trying to get up to those densities.

CERN actually does want to make artificial black holes. Actually have two particles collide so intensely that they pop off a little black hole. And before you ask the question — no this is not dangerous. CERN does not get up to energies anywhere near what's happening in the natural world. These high-energy particles from space are much more energetic than CERN could ever do.

So if anything dangerous was going to happen, it would already have happened. These tiny little black holes we think don't live very long, maybe even a millionth of a second. The whole point will be to detect them at all. All you need is a certain amount of mass and a certain amount of volume.

It doesn't matter how much mass and you'll get a black hole. For example, if you could actually crush the entire Earth into the size of a ping-pong ball that would be a black hole. But now let me tell you that things go the other way too. We know black holes that are much, much more massive than stars.

There are things called supermassive black holes that are millions or billions of times the mass of the Sun. We see these in the center of galaxies all around us. And quite honestly, one of the biggest questions in astronomy right now is how do these giant black holes form?

Because we see them so far away in space, we see them in galaxies that are 10 billion light years away and that means that 10 billion years ago when the universe wasn't very old you already had black holes that were billions of times the mass of the Sun. Now, those supermassive black holes are really interesting because remember I told you the whole point is getting the right density for a black hole.

It doesn't really matter how much matter there is. Intriguingly, these giant black holes are actually not very dense, on average. If you had a black hole that was about 4 million times the mass of the Sun, the diameter of that black hole would be about the orbit of where Jupiter is in our solar system and the average density of it, across that whole volume, would be about the same as water. So how is it...

More Articles

View All
Safari Live - Day 238 | National Geographic
This program features live coverage of an African safari and may include animal kills and caucuses. Viewer discretion is advised. This is why the inclement ride is such a firm favorite. It’s Quito. [Music] It just looks ready for a fight. [Music] This is…
How covid impacted private aviation! Parts-1
What do you think Covet did for the private aviation industry? Because I’ll be honest, when that whole thing was going on, that was kind of my first introduction to starting the charter travel. It got very crazy, and even though prices were quite crazy at…
Khanmigo essay feedback demo | Introducing Khanmigo | Khanmigo for students | Khan Academy
Hey, this is Sarah from KH Academy, and I’m going to show you how to use our “Give Feedback on My Academic Essay” activity from Kigo. Like all other Kigo activities, you can get here from your AI activities page under the right section of the menu. When …
Startup Experts Reveal Their Top Productivity Advice
A lot of people think that they’re great at multitasking, and they are not. I think the best Founders, you’ll see them be very picky with their time, and sometimes it’s the non-obvious things that end up being the things that really unlock your business. …
What Are You?
Are you your body? Well, kind of, right? But is there a line where this stops being true? How much of yourself can you remove before you stop being you? And does the question even make sense? Your physical existence is cells, trillions of them, at least …
#shorts The Day I Got Famous
And I was in Boston Logan with my daughter and my wife, and we’re getting on a flight. I went to the washroom; he was on my right. You, you’re sitting at the, you’re standing at the urinal. He kept looking at me, kept looking at me. I’ll never forget this…