yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Equations with rational expressions (example 2) | Mathematics III | High School Math | Khan Academy


4m read
·Nov 11, 2024

So we have a nice little equation here that has some rational expressions in it. And like always, pause the video and see if you can figure out which X's satisfy this equation.

Alright, let's work through it together. Now, when I see things in the denominator like this, my instinct is to try to not have denominators like this. And so what we could do is to get rid of this x - 1 in the denominator on the left-hand side. We can multiply both sides of the equation by (x - 1).

So we're going to multiply both sides by (x - 1). Once again, the whole point of doing that is so that we get rid of this x - 1 in the denominator right over here. Then, to get rid of this x + 1 in the denominator over here, we can multiply both sides of the equation by (x + 1).

So, (x + 1) multiply both sides by (x + 1). And so what is that going to give us? Well, on the left-hand side, that is going to be (x - 1)/(x - 1), which is just going to be 1 for the x's where that’s defined, for x not being equal to 1.

So we're going to have (x + 1) * (-2x + 4). Let me write that down. So we have x + 1 times (-2x + 4) is going to be equal to now. If we multiply both of these times 3/(x + 1), the x + 1 is going to cancel with the x + 1, and we're going to be left with 3 * (x - 1).

So that is going to be 3x - 3. Then, minus (-1) times both of these, so -1 * (x - 1) * (x + 1). All I did is I multiplied, took (x - 1) * (x + 1), and multiplied it times each of these terms. When I multiplied it times this first term, the x + 1 and the x + 1 canceled, so I just had to multiply 3 * (x - 1).

For the second term, I just multiply it times both of these. And now you might recognize this. If you have something like (x + 1) * (x - 1), that's going to be (x^2 - 1). So I could rewrite all of this right over here as being equal to (x^2 - 1).

And once again, that's because this is the same thing as (x^2 - 1). Since I'm subtracting an (x^2 - 1), actually let me just—I don't want to do too much in one step, so let's go to the next step.

I could multiply this out. So I could multiply x * (-2x), which would give us -2x^2. x * 4, which is going to give us +4x. I can multiply 1 * (-2x), so I'm going to subtract 2x. Then, 1 * 4, which is going to be +4.

That is going to be equal to 3x - 3, and then we can distribute this negative sign. So we can say - (x^2 - 1). Over here, we can simplify it a little bit. This is going to be— that is 4x - 2x, so that would be 2x.

So this is simplified to—let's see. Well, this is—we have a -3 and a +1. So those two together are going to be equal to -2. We can rewrite everything as—do a neutral color now—-2x^2 + 2x + 4 is equal to (x^2 + 3x - 2).

Now we can try to get all of this business onto the right-hand side, so let's subtract it from both sides. We'll add x^2 to both sides; that gets rid of this negative x^2. Then we subtract 3x from both sides and add 2 to both sides.

We will be left with—let's see—(-2x^2 + x^2) which is -x^2. Then, (2x - 3x) is -x, and then (4 + 2) is 6, which is going to be equal to 0. I don't like having this negative on the x's, so let's multiply both sides by -1.

If I do that, if I just take the negative of both sides, I'm going to get—I'm going to get positive x^2 + x - 6 is equal to 0. And we're making some good progress here, so we can factor this.

Actually, let me just do it right over here so that we can see the original problem. If I factor this, what two numbers (their product is -6) and they add up to the coefficient of 1 on the first-degree term? Well, positive 3 and negative 2 work.

So I can rewrite this as (x + 3) * (x - 2) is equal to 0. Did I do that right? Yeah, 3 * -2 is -6, and 3x - 2x is +x. Alright, so I just factored. I just wrote this quadratic in factored form.

The way that you get this equaling zero is if either one of those equals zero: (x + 3) = 0 or (x - 2) = 0. Well, this is going to happen if you subtract 3 from both sides; you get—that's going to happen if x is equal to -3. Or over here, if you add 2 to both sides, x is equal to 2.

So either one of these will satisfy, but we want to be careful. We want to make sure that our original equation isn't going to be undefined for either one of these. -3 does not make any of the denominators equal to zero, so that's cool.

And positive 2 does not make any of the denominators equal to zero, so it looks like we're in good shape. There are two solutions to that equation. If one of them made any of the denominators equal to zero, then they would have been extraneous solutions.

They would have been solutions for some of our intermediate steps, but not for the actual original equations with the expressions as they were written. But this, we can feel good about because neither of these make any of these denominators equal to zero.

More Articles

View All
Wading for Change | Short Film Showcase | National Geographic
Foreign [Music] There’s a power in belief my family always used to say. Responder, believing is power. So when I would see magazines of, you know, white fly fishermen in Yellowstone, I did believe that it would be me one day. Leaving home for me has been …
Definite integral of radical function | AP Calculus AB | Khan Academy
So we want to evaluate the definite integral from -1 to 8 of 12 * the cube root of x dx. Let’s see, this is going to be the same thing as the definite integral from -1 to 8 of 12 * the cube root is the same thing as saying x to the 1⁄3 power dx. And so n…
Shopping For Affordable Watches With Teddy Baldassarre
Teddy’s learning he’s the grasshopper; he’s learning from the master. That’s the way I look at it. [Laughter] Garbage! You know, when you’re a fashionista like me, you can pick style out five yards away already. I’m kicking Teddy’s ass here; this is amazi…
Metric system unit conversion examples
Tomas dropped off two packages to be shipped. One package weighed 1.38 kg and the other package weighed 720 g. So the first one they given in kilograms and the second one they give us in grams. What was the combined weight of both packages in grams? So w…
I decided to change my life
Couple of months ago, I experienced my first burnout. I couldn’t get out of my bed. I was escaping from my responsibilities. I couldn’t do anything; I was delaying every single thing and procrastinating even from the things that I was enjoying. During tha…
Warren Buffett: How to Invest in an Overvalued Market
Some people are not actually emotionally or psychologically fit to own stocks, but I think there are more of them that would be if you get educated on what you’re really buying, which is part of a business. There is Mr. Warren Buffett, the world’s best in…