yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential functions differentiation intro | Advanced derivatives | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I want to do in this video is explore taking the derivatives of exponential functions. So we've already seen that the derivative with respect to x of e to the x is equal to e to the x, which is a pretty amazing thing. One of the many things that makes e somewhat special is that when you have an exponential with your base right over here as e, the derivative of it, the slope at any point, is equal to the actual value of that actual function.

But now, let's start exploring when we have other bases. Can we somehow figure out what is the derivative with respect to x when we have a to the x, where a could be any number? Is there some way to figure this out, and maybe using our knowledge that the derivative of e to the x is e to the x? Well, can we somehow use a little bit of algebra and exponent properties to rewrite this so it does look like something with e as a base?

Well, you could view a as being equal to e. Let me write it this way: a is being equal to e to the natural log of a. Now, I want you, if this isn't obvious to you, I really want you to think about it. What is the natural log of a? The natural log of a is the power you need to raise e to, to get to a.

So if you actually raise e to that power, if you raise e to the power you need to raise e to get to a, well then you're just going to get to a. So really think about this; don't just accept this as a leap of faith. It should make sense to you and it just comes out of really what a logarithm is.

And so we can replace a with this whole expression here. We can exp—if a is the same thing as e to the natural log of a, well then this is going to be equal to the derivative with respect to x of e to the natural log of a, and then we're going to raise that to the x power. We're going to raise that to the x power.

And now, just using our exponent properties, this is going to be equal to the derivative with respect to x of—and I'll keep color coding it—if I raise something to an exponent then raise that to an exponent, that's the same thing as raising our original base to the product of those exponents. That's just a basic exponent property.

So that's going to be the same thing as e to the natural log of a times x power. And now we can use the chain rule to evaluate this derivative. So what we will do is we will first take the derivative of the outside function, so e to the natural log of a times x, with respect to the inside function, with respect to natural log of a times x.

And so this is going to be equal to e to the natural log of a times x. And then we take the derivative of that inside function with respect to x. Well, natural log of a might not immediately jump out to you, but that's just going to be a number. So that's just going to be—so times the derivative, if it was the derivative of 3x, it would just be 3.

If it's the derivative of natural log of a times x, it's just going to be natural log of a. And so this is going to give us the natural log of a times e to the natural log of a. And I'm going to write it like this: natural log of a to the x power. Well, we've already seen this.

Let me—this right over here is just a, so it all simplifies. It all simplifies to the natural log of a times a to the x, which is a pretty neat result. So if you're taking the derivative of e to the x, it's just going to be e to the x. If you're taking the derivative of a to the x, it's just going to be the natural log of a times a to the x.

And so we can now use this result to actually take the derivatives of these types of expressions with bases other than e. So if I want to find the derivative with respect to x of 8 times 3 to the x power, well what's that going to be? Well, that's just going to be 8 times, and then the derivative of this right over here is going to be, based on what we just saw, it's going to be the natural log of our base, natural log of 3, times 3 to the x.

So it's equal to 8 times natural log of 3 times 3 to the x.

More Articles

View All
Seth MacFarlane’s Scientific Influences | StarTalk
Seth, I called you into my office. Yes, I gotta talk to you because you want me to help you clean up. I clean up the office. Uh, I got at some point I had to find you and talk to you about the science and Family Guy. Yeah, yeah, you just have to watch a …
The Future of Cyberwarfare | Origins: The Journey of Humankind
NARRATOR: September 11, 2001, terror strikes set the tone for warfare in the 21st century. But the 21st century has also seen the rise of another kind of warfare— warfare that lets nations and loners do battle without guns or bombs. These days, the bigges…
Solving the Water Problem | Breakthrough
Our lifestyles are very thirsty, and it’s not just the water that comes out of the tap at home. You know, if we think about our daily lifestyle, everything we use, and where and buy and eat takes water to make, and sometimes really a surprising amount. It…
Building a Bench in the Arctic | Life Below Zero
Ah damn it, slip chain! I hate these small limbs! Like that, it happens with chainsaws. I gotta fix this up; the fun ain’t over yet. Okay, I got my poles. Time to get to work! What I want to do is get this bark off; then I’m gonna make a point and drive …
Gaining the Trust of the Gorillas | Dian Fossey: Secrets in the Mist
KELLY STEWART: Dian Fossey was definitely a pioneer. I do not think that word has been overused. Before that, nobody had done a long-term study of gorillas. Nobody had studied them month after month and year after year. IAN REDMOND: She wanted to be the …
Lecture 7 - How to Build Products Users Love (Kevin Hale)
All right, so um when I talk about making products users love, um what I mean specifically is like how do we make things that has a passionate user base that um our users are unconditionally um wanting it to be successful both on the products that we buil…