yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential functions differentiation intro | Advanced derivatives | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I want to do in this video is explore taking the derivatives of exponential functions. So we've already seen that the derivative with respect to x of e to the x is equal to e to the x, which is a pretty amazing thing. One of the many things that makes e somewhat special is that when you have an exponential with your base right over here as e, the derivative of it, the slope at any point, is equal to the actual value of that actual function.

But now, let's start exploring when we have other bases. Can we somehow figure out what is the derivative with respect to x when we have a to the x, where a could be any number? Is there some way to figure this out, and maybe using our knowledge that the derivative of e to the x is e to the x? Well, can we somehow use a little bit of algebra and exponent properties to rewrite this so it does look like something with e as a base?

Well, you could view a as being equal to e. Let me write it this way: a is being equal to e to the natural log of a. Now, I want you, if this isn't obvious to you, I really want you to think about it. What is the natural log of a? The natural log of a is the power you need to raise e to, to get to a.

So if you actually raise e to that power, if you raise e to the power you need to raise e to get to a, well then you're just going to get to a. So really think about this; don't just accept this as a leap of faith. It should make sense to you and it just comes out of really what a logarithm is.

And so we can replace a with this whole expression here. We can exp—if a is the same thing as e to the natural log of a, well then this is going to be equal to the derivative with respect to x of e to the natural log of a, and then we're going to raise that to the x power. We're going to raise that to the x power.

And now, just using our exponent properties, this is going to be equal to the derivative with respect to x of—and I'll keep color coding it—if I raise something to an exponent then raise that to an exponent, that's the same thing as raising our original base to the product of those exponents. That's just a basic exponent property.

So that's going to be the same thing as e to the natural log of a times x power. And now we can use the chain rule to evaluate this derivative. So what we will do is we will first take the derivative of the outside function, so e to the natural log of a times x, with respect to the inside function, with respect to natural log of a times x.

And so this is going to be equal to e to the natural log of a times x. And then we take the derivative of that inside function with respect to x. Well, natural log of a might not immediately jump out to you, but that's just going to be a number. So that's just going to be—so times the derivative, if it was the derivative of 3x, it would just be 3.

If it's the derivative of natural log of a times x, it's just going to be natural log of a. And so this is going to give us the natural log of a times e to the natural log of a. And I'm going to write it like this: natural log of a to the x power. Well, we've already seen this.

Let me—this right over here is just a, so it all simplifies. It all simplifies to the natural log of a times a to the x, which is a pretty neat result. So if you're taking the derivative of e to the x, it's just going to be e to the x. If you're taking the derivative of a to the x, it's just going to be the natural log of a times a to the x.

And so we can now use this result to actually take the derivatives of these types of expressions with bases other than e. So if I want to find the derivative with respect to x of 8 times 3 to the x power, well what's that going to be? Well, that's just going to be 8 times, and then the derivative of this right over here is going to be, based on what we just saw, it's going to be the natural log of our base, natural log of 3, times 3 to the x.

So it's equal to 8 times natural log of 3 times 3 to the x.

More Articles

View All
How Far Can We Go? Limits of Humanity (Old Version – Watch the New One)
Is there a border we will never cross? Are there places we will never reach, no matter how hard we try? Turns out there are. Even with science fiction technology, we are trapped in our pocket of the universe. How can that be? And how far can we go? We li…
Investigating Rock Carvings | Atlantis Rising
Author George’s Diaz Montek Sano has been researching this area for years, and he’s convinced that some Atlantan refugees fled inland and built shrines to memorialize the lost city. Deciphering the shrine would help Giorgos prove his theory. “No sir, a r…
Multiplying 10s | Math | 4th grade | Khan Academy
Let’s multiply 40 times 70. So, 40 times we have the number 70. So, we could actually list that out, the number 70, 40 different times and add it up, but that’s clearly a lot of computation to do, and there’s got to be a faster way. So, another way is …
Critiquing Startup Websites With Webflow CEO
Hi, I’m Aaron, group partner at YC, and welcome to another episode of design review. [Music] Today, we’ve got a special episode; we are coming at you from the Webflow offices, and I’m joined today by Vlad, co-founder and CEO of Webflow. Welcome, everyone!…
Trick involving Maclaurin expansion of cosx
The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ). So one thing that you’re immediately going to find, let’s just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynom…
The Secret History of Grillz | Explorer
Deep in an underwater cave on Mexico’s Yucatan Peninsula, a team of archaeologists made a groundbreaking discovery: the skulls of ancient Maya, who ruled over a 4,000-year-old civilization. Perhaps most surprising was that these skulls reveal the ancient …