yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing a Jacobian matrix


3m read
·Nov 11, 2024

So just as a reminder of where we are, we've got this very nonlinear transformation. We showed that if you zoom in on a specific point while that transformation is happening, it looks a lot like something linear. We reasoned that you can figure out what linear transformation that looks like by taking the partial derivatives of your given function, the one that I defined up here, and then turning that into a matrix.

What I want to do here is basically just finish up what I was talking about by computing all of those partial derivatives. So first of all, let me just rewrite the function back on the screen so we have it in a convenient place to look at. The first component is X plus s of y, s of Y, and then y plus s of X was the second component.

So what I want to do here is just compute all of those partial derivatives to show what kind of thing this looks like. So let's go ahead and get rid of this word, then I'll go ahead and kind of redraw the matrix here. For that upper left component, we're taking the partial derivative with respect to X of the first component.

So we look up at this first component, and the partial derivative with respect to X is just one since there's 1 * X plus something that has nothing to do with X. Then below that, we take the partial derivative of the second component with respect to X down here, and that guy, the Y, well that looks like a constant, so nothing happens. The derivative of s of X becomes cosine of x.

Then up here, we're taking the partial derivative with respect to Y of the first component, that upper one here, and for that, you know, the partial derivative of x with respect to Y is zero. The partial derivative of s of Y with respect to Y is cosine of Y. Finally, the partial derivative of the second component with respect to Y looks like 1 because it's just 1 * y plus some constant.

This is the general Jacobian as a function of X and Y. But if we want to understand what happens around the specific point that started off at, well I think I recorded it here at -21. We plug that into each one of these values. When we plug in -21, so go ahead and just kind of again rewrite it to remember we're plugging in -21 as our specific point, that matrix as a function, kind of a matrix-valued function, becomes one.

Then next we have cosine, but we're plugging in -2 for x. Cosine of -2, and if you're curious, that is approximately equal to, I calculated this earlier, 0.42 if you just want to think in terms of a number there. Then for the upper right, we have cosine again, but now we're plugging in the value for Y, which is one, and cosine of 1 is approximately equal to 0.54.

Then bottom right, that's just another constant, one. So that is the matrix just as a matrix full of numbers. Just as kind of a gut check, we can take a look at the linear transformation this was supposed to look like and notice how the first basis vector, the thing it got turned into, which is this vector here, does look like it has coordinates 1 and 0.42.

Right, it's got this rightward component that's about as long as the vector itself started, and then this downward component, which I think that's, you know, pretty believable that that's 0.42. Likewise, this second column is telling us what happened to that second basis vector, which is the one that looks like this, and again, its y component is about as long as how it started, right? A length of one, and then the rightward component is around half of that, and we actually see that in the diagram.

But this is something you compute. Again, it's pretty straightforward; you just take all of the possible partial derivatives and you organize them into a grid like this. So with that, I'll see you guys next video.

More Articles

View All
Venus 101 | National Geographic
(Ethereal music) - [Angeli Gabriel] Named after the ancient Roman goddess of beauty, Venus is known for its exceptional brightness in the night sky. But behind this facade is a world of storms and infernos unlike anywhere else in the solar system. Venus,…
Warren Buffett: The Upcoming Stock Market Collapse (Warren Buffett Indicator)
So as we all know, 2022 was a rough year for investors in the stock market. The S&P 500 was down 18%, the Dow Jones Industrial Average was down seven percent, and the NASDAQ was down a whopping 33%. After these big declines in the stock market, one wo…
The Internet is Worse Than Ever – Now What?
In 2022, nearly half of Americans expected a civil war in the next few years. One in five now believes political violence is justified. And it’s not just the US, but around the world. People increasingly see themselves as part of opposing teams. There are…
What are SMART goals and why do they matter? | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about smart goals when it comes to your finances. When I say smart goals, I’m not just saying well-thought-out or intelligent goals, although I guess it could be that. I’m talking about the acronym S-M-A-R-T: smart goals. Now, …
Invertible matrices and determinants | Matrices | Precalculus | Khan Academy
So let’s dig a little bit more into matrices and their inverses, and in particular, I’m going to explore the situations in which there might not be an inverse for a matrix. So just as a review, we think about if we have some matrix A, is there some other…
Has work ethic deteriorated in recent years?
Work ethic of people have really deteriorated significantly since COVID. These people who want to work from home four days a week, three days a week—you know, everybody’s complaining. Today, interest rates are going up, gas prices are so high, I can’t aff…