yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing a Jacobian matrix


3m read
·Nov 11, 2024

So just as a reminder of where we are, we've got this very nonlinear transformation. We showed that if you zoom in on a specific point while that transformation is happening, it looks a lot like something linear. We reasoned that you can figure out what linear transformation that looks like by taking the partial derivatives of your given function, the one that I defined up here, and then turning that into a matrix.

What I want to do here is basically just finish up what I was talking about by computing all of those partial derivatives. So first of all, let me just rewrite the function back on the screen so we have it in a convenient place to look at. The first component is X plus s of y, s of Y, and then y plus s of X was the second component.

So what I want to do here is just compute all of those partial derivatives to show what kind of thing this looks like. So let's go ahead and get rid of this word, then I'll go ahead and kind of redraw the matrix here. For that upper left component, we're taking the partial derivative with respect to X of the first component.

So we look up at this first component, and the partial derivative with respect to X is just one since there's 1 * X plus something that has nothing to do with X. Then below that, we take the partial derivative of the second component with respect to X down here, and that guy, the Y, well that looks like a constant, so nothing happens. The derivative of s of X becomes cosine of x.

Then up here, we're taking the partial derivative with respect to Y of the first component, that upper one here, and for that, you know, the partial derivative of x with respect to Y is zero. The partial derivative of s of Y with respect to Y is cosine of Y. Finally, the partial derivative of the second component with respect to Y looks like 1 because it's just 1 * y plus some constant.

This is the general Jacobian as a function of X and Y. But if we want to understand what happens around the specific point that started off at, well I think I recorded it here at -21. We plug that into each one of these values. When we plug in -21, so go ahead and just kind of again rewrite it to remember we're plugging in -21 as our specific point, that matrix as a function, kind of a matrix-valued function, becomes one.

Then next we have cosine, but we're plugging in -2 for x. Cosine of -2, and if you're curious, that is approximately equal to, I calculated this earlier, 0.42 if you just want to think in terms of a number there. Then for the upper right, we have cosine again, but now we're plugging in the value for Y, which is one, and cosine of 1 is approximately equal to 0.54.

Then bottom right, that's just another constant, one. So that is the matrix just as a matrix full of numbers. Just as kind of a gut check, we can take a look at the linear transformation this was supposed to look like and notice how the first basis vector, the thing it got turned into, which is this vector here, does look like it has coordinates 1 and 0.42.

Right, it's got this rightward component that's about as long as the vector itself started, and then this downward component, which I think that's, you know, pretty believable that that's 0.42. Likewise, this second column is telling us what happened to that second basis vector, which is the one that looks like this, and again, its y component is about as long as how it started, right? A length of one, and then the rightward component is around half of that, and we actually see that in the diagram.

But this is something you compute. Again, it's pretty straightforward; you just take all of the possible partial derivatives and you organize them into a grid like this. So with that, I'll see you guys next video.

More Articles

View All
Simple redox reactions | Chemistry | Khan Academy
You have probably heard about this word: oxidation, oxidizing, or antioxidants, and stuff like that. But what exactly does it mean, and what can you do knowing about it? Well, let’s find out. Oxidation has the word oxygen in it; you can see that, right? …
Warren Buffett's BIG bets in JAPAN (w/ @InvestingwithTom)
Hey guys, welcome back to the channel! In this video, we’ve got some big news to cover because news out of Warren Buffett’s company Berkshire Hathaway. They put out a press release a few days ago now, where they said that Berkshire Hathaway has acquired a…
Car buying pitfalls | Car buying | Financial Literacy | Khan Academy
What we’re going to do in this video is think about some things that you should think about when you are buying a car. To help us with that, we have this fake invoice from a car dealership for a car I guess that I am buying. This looks like a used Honda O…
#shorts The Day I Got Famous
And I was in Boston Logan with my daughter and my wife, and we’re getting on a flight. I went to the washroom; he was on my right. You, you’re sitting at the, you’re standing at the urinal. He kept looking at me, kept looking at me. I’ll never forget this…
These are the asteroids to worry about
This video was sponsored by KiwiCo. More about them at the end of the show. On February 15th, 2013, over Chelyabinsk, Russia, an asteroid heavier than the Eiffel Tower slammed into the atmosphere. And then, 30 kilometers above the ground, it exploded. Thi…
Laura Ling on Imprisonment in North Korea | Inside North Korea
In March of 2009, I was working on a documentary about North Korean defectors, people who are fleeing the very desperate conditions in North Korea. During that time, we were filming along the Tumen River. This is the river that separates China and North K…