yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing a Jacobian matrix


3m read
·Nov 11, 2024

So just as a reminder of where we are, we've got this very nonlinear transformation. We showed that if you zoom in on a specific point while that transformation is happening, it looks a lot like something linear. We reasoned that you can figure out what linear transformation that looks like by taking the partial derivatives of your given function, the one that I defined up here, and then turning that into a matrix.

What I want to do here is basically just finish up what I was talking about by computing all of those partial derivatives. So first of all, let me just rewrite the function back on the screen so we have it in a convenient place to look at. The first component is X plus s of y, s of Y, and then y plus s of X was the second component.

So what I want to do here is just compute all of those partial derivatives to show what kind of thing this looks like. So let's go ahead and get rid of this word, then I'll go ahead and kind of redraw the matrix here. For that upper left component, we're taking the partial derivative with respect to X of the first component.

So we look up at this first component, and the partial derivative with respect to X is just one since there's 1 * X plus something that has nothing to do with X. Then below that, we take the partial derivative of the second component with respect to X down here, and that guy, the Y, well that looks like a constant, so nothing happens. The derivative of s of X becomes cosine of x.

Then up here, we're taking the partial derivative with respect to Y of the first component, that upper one here, and for that, you know, the partial derivative of x with respect to Y is zero. The partial derivative of s of Y with respect to Y is cosine of Y. Finally, the partial derivative of the second component with respect to Y looks like 1 because it's just 1 * y plus some constant.

This is the general Jacobian as a function of X and Y. But if we want to understand what happens around the specific point that started off at, well I think I recorded it here at -21. We plug that into each one of these values. When we plug in -21, so go ahead and just kind of again rewrite it to remember we're plugging in -21 as our specific point, that matrix as a function, kind of a matrix-valued function, becomes one.

Then next we have cosine, but we're plugging in -2 for x. Cosine of -2, and if you're curious, that is approximately equal to, I calculated this earlier, 0.42 if you just want to think in terms of a number there. Then for the upper right, we have cosine again, but now we're plugging in the value for Y, which is one, and cosine of 1 is approximately equal to 0.54.

Then bottom right, that's just another constant, one. So that is the matrix just as a matrix full of numbers. Just as kind of a gut check, we can take a look at the linear transformation this was supposed to look like and notice how the first basis vector, the thing it got turned into, which is this vector here, does look like it has coordinates 1 and 0.42.

Right, it's got this rightward component that's about as long as the vector itself started, and then this downward component, which I think that's, you know, pretty believable that that's 0.42. Likewise, this second column is telling us what happened to that second basis vector, which is the one that looks like this, and again, its y component is about as long as how it started, right? A length of one, and then the rightward component is around half of that, and we actually see that in the diagram.

But this is something you compute. Again, it's pretty straightforward; you just take all of the possible partial derivatives and you organize them into a grid like this. So with that, I'll see you guys next video.

More Articles

View All
Slow-Mo Non-Newtonian Fluid on a Speaker
So today I am going to do everyone’s favorite non-Newtonian experiment. I am going to put this corn starch and water solution on this speaker, but I want to do this scientifically. So I am shooting it with a high-speed camera, and I am going to vary the …
The Learners Fund - The Khan Academy story
Hi everyone, Salan here from Khan Academy. First of all, let me just thank you for either considering becoming part of the Learners Fund or especially if you are already a member, because the Learners Fund really is the backbone of our philanthropy here a…
Worked example: Balancing a simple redox equation | Chemical reactions | AP Chemistry | Khan Academy
So what we have here is a redox reaction. Things are getting oxidized and reduced; that’s the name, redox. But we want to balance this redox reaction, and when we talk about balancing a redox reaction, we want to make sure we conserve mass and charge on b…
Why you feel so stuck in life
[Music] So the past year and a half, I’ve really been made aware of the intimate relationship between our psychology and our physiology. It seemed like, as we were locked down physically, we were also locked down mentally. As we felt kind of stuck in our …
Macaroni Penguins Swim, Surf, and Dodge Seals to Survive – Ep. 2 | Wildlife: Resurrection Island
Imagine having to surf to get home. Then imagine doing it after swimming 300 miles in the roughest ocean on the planet. Not to mention the seals waiting for their chance to rip your little head off. This is just a single day in the extraordinary life of t…
3D Home Printing for the Developing World – Alexandria Lafci and Brett Hagler of New Story Charity
How about we start with you guys explaining what you do, and then we’ll go back in time and talk about how you ended up doing YC and all the rest of it. Also, sure! So, we’re a nonprofit, one of the first ones to go through Y Combinator, and we build hou…