yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Manipulating expressions using structure (example 2) | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told, suppose ( a + b ) is equal to ( 2a ). Which of these expressions equals ( b - a )?

All right, I encourage you to pause the video and see if you can figure that out. Which of these expressions would be equal to ( b - a )? It's going to just involve some algebraic manipulation.

All right, let's work through this together. So we are told that ( a + b ) is equal to ( 2a ). The first thing I would want to do is get all my ( a )'s in one place, and one way I could do that is I could subtract ( a ) from both sides.

So if I subtract ( a ) from both sides, I am going to be left with just ( b ) on the left-hand side, and on the right-hand side, I'm going to be left with ( 2a - a ). Well, that's just going to be ( a ). If I have two of something, and I subtract one of them, take away one of them, I'm going to have just one of those something—it's equal to ( 1a ).

So, we want to figure out what ( b - a ) is. Well, luckily, I can figure that out if I subtract ( a ) from both sides. So if I subtract ( a ) from both sides, well then I'm going to get on the left-hand side ( b - a ), which is what we want to figure out, is equal to ( a - a ), which is equal to zero.

So ( b - a ) is equal to ( 0 ), which is not one of the choices. All right, so let's see if we can figure out some other things over here. So ( b - a ) is equal to zero, but that is not one of the choices.

All right, is there any other way to manipulate this? No?

I could just go straight ahead and subtract ( 2a ) from both sides, and I would get ( b - a ) is equal to zero. Oh, this is interesting; this is a tricky one.

So ( b - a ) is zero. Well, if ( b - a ) is equal to zero, if we take the negative of both sides of this... If we take the negative of both sides, if we multiply both sides by -1—well, on the left-hand side, we get ( a - b ), and on the right-hand side, we still get zero.

If ( b - a ) is zero, then the negative of it, which is ( a - b ), is also going to be equal to zero. And that's this choice. Let me do that in a little darker color. That is this choice right over there. That was a good one!

More Articles

View All
Kevin O'Leary Talks Hockey
Well, I want to get your thoughts on this breaking news: Brian Burke is no longer the president and general manager of the Toronto Maple Leafs. For full disclosure, I know the man; I respect him a lot. I like his discipline, his focus, and that’s probably…
Khan Academy Districts Overview
Foreign [Music] The benefit that Khan Academy brings to our school district is being able to provide a platform that provides individualized practice study skill. The ability for students to increase their knowledge proficiency. The support that Khan Aca…
Why Black Holes Could Delete The Universe – The Information Paradox
Black holes are the most powerful things in the universe, strong enough to rip whole stars into atom-sized pieces. Well, this is scary enough. They have an even more powerful and dark property: they might delete the universe itself. Black holes in a nuts…
Virtually Viral | Explorers in the Field
(Gentle music) [Pardis] Early on when my research wasn’t going that well, and I was having trouble, people would be like, well, she’s in a band. But then when my research started going well, and I started publishing, they’d be like wow, and she’s in a ba…
Decomposing angles | Math | 4th grade | Khan Academy
What is the measure of angle EAC? So, we have this symbol here which means angle and then these three letters: E, A, C. Now, to measure angle EAC, we need to first find angle EAC down here on our picture. The way we can do that is use these three letter…
What Can You Do Without a Brain?
Hey, Vsauce. Michael here. And subscribing to Vsauce is a no-brainer, or is it? I mean, you would need your brain to understand the words that I was speaking, and you would need your brain to decide whether or not you liked what you were hearing. You wou…