yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Manipulating expressions using structure (example 2) | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told, suppose ( a + b ) is equal to ( 2a ). Which of these expressions equals ( b - a )?

All right, I encourage you to pause the video and see if you can figure that out. Which of these expressions would be equal to ( b - a )? It's going to just involve some algebraic manipulation.

All right, let's work through this together. So we are told that ( a + b ) is equal to ( 2a ). The first thing I would want to do is get all my ( a )'s in one place, and one way I could do that is I could subtract ( a ) from both sides.

So if I subtract ( a ) from both sides, I am going to be left with just ( b ) on the left-hand side, and on the right-hand side, I'm going to be left with ( 2a - a ). Well, that's just going to be ( a ). If I have two of something, and I subtract one of them, take away one of them, I'm going to have just one of those something—it's equal to ( 1a ).

So, we want to figure out what ( b - a ) is. Well, luckily, I can figure that out if I subtract ( a ) from both sides. So if I subtract ( a ) from both sides, well then I'm going to get on the left-hand side ( b - a ), which is what we want to figure out, is equal to ( a - a ), which is equal to zero.

So ( b - a ) is equal to ( 0 ), which is not one of the choices. All right, so let's see if we can figure out some other things over here. So ( b - a ) is equal to zero, but that is not one of the choices.

All right, is there any other way to manipulate this? No?

I could just go straight ahead and subtract ( 2a ) from both sides, and I would get ( b - a ) is equal to zero. Oh, this is interesting; this is a tricky one.

So ( b - a ) is zero. Well, if ( b - a ) is equal to zero, if we take the negative of both sides of this... If we take the negative of both sides, if we multiply both sides by -1—well, on the left-hand side, we get ( a - b ), and on the right-hand side, we still get zero.

If ( b - a ) is zero, then the negative of it, which is ( a - b ), is also going to be equal to zero. And that's this choice. Let me do that in a little darker color. That is this choice right over there. That was a good one!

More Articles

View All
14 minutes of more useless information..
[Music] As I was getting ready to go out the other day, I realized I couldn’t button my pants up all the way. I realized I was gravitationally challenged and that I had been growing in all the wrong directions. So I started doing what any reasonable perso…
10 BAD HABITS THAT DESTROY YOUR CONFIDENCE | STOICISM INSIGHTS
Welcome back to Stoicism Insights, where we delve deep into the wisdom of the Stoic philosophy to uncover timeless truths for modern living. Have you ever wondered why on some days you feel like you can conquer the world, and on others you struggle to mak…
Contact Forces | Dynamics | AP Physics 1 | Khan Academy
There are a lot of different types of forces in physics, but for the most part, all forces can be categorized as either being a contact force or a long-range force. So, contact forces, as the name suggests, require the two objects that are exerting a for…
Selfie Waves
[Music] Hey, Vsauce. Michael here. On July 1st of 2015, a long-standing ban was lifted. Visitors were finally allowed to take selfies at the White House. This is the first legal selfie ever taken on a White House tour. But a year before the ban was lifte…
Cutting shapes into equal parts | Math | 3rd grade | Khan Academy
Is each piece equal to one-fourth of the area of the pie? So we have a pie, and it has one, two, three, four pieces. So it does have four pieces. So is one of those pieces equal to one-fourth of the pie? Well, let’s talk about what we mean when we have a…
2015 AP Calculus AB 6b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical. So, we want to figure out the points on that curve where the tangent line is vertical. Let’s just remind ourselves what the slope of a tange…