yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Manipulating expressions using structure (example 2) | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told, suppose ( a + b ) is equal to ( 2a ). Which of these expressions equals ( b - a )?

All right, I encourage you to pause the video and see if you can figure that out. Which of these expressions would be equal to ( b - a )? It's going to just involve some algebraic manipulation.

All right, let's work through this together. So we are told that ( a + b ) is equal to ( 2a ). The first thing I would want to do is get all my ( a )'s in one place, and one way I could do that is I could subtract ( a ) from both sides.

So if I subtract ( a ) from both sides, I am going to be left with just ( b ) on the left-hand side, and on the right-hand side, I'm going to be left with ( 2a - a ). Well, that's just going to be ( a ). If I have two of something, and I subtract one of them, take away one of them, I'm going to have just one of those something—it's equal to ( 1a ).

So, we want to figure out what ( b - a ) is. Well, luckily, I can figure that out if I subtract ( a ) from both sides. So if I subtract ( a ) from both sides, well then I'm going to get on the left-hand side ( b - a ), which is what we want to figure out, is equal to ( a - a ), which is equal to zero.

So ( b - a ) is equal to ( 0 ), which is not one of the choices. All right, so let's see if we can figure out some other things over here. So ( b - a ) is equal to zero, but that is not one of the choices.

All right, is there any other way to manipulate this? No?

I could just go straight ahead and subtract ( 2a ) from both sides, and I would get ( b - a ) is equal to zero. Oh, this is interesting; this is a tricky one.

So ( b - a ) is zero. Well, if ( b - a ) is equal to zero, if we take the negative of both sides of this... If we take the negative of both sides, if we multiply both sides by -1—well, on the left-hand side, we get ( a - b ), and on the right-hand side, we still get zero.

If ( b - a ) is zero, then the negative of it, which is ( a - b ), is also going to be equal to zero. And that's this choice. Let me do that in a little darker color. That is this choice right over there. That was a good one!

More Articles

View All
Jason Silva on Science, Adventure and Exploration | Brain Games
[Music] What does it mean to explore? What does it mean to adventure? Walker Percy wrote, “The search is what anyone would undertake if he were not sunk in the everydayness of his own life.” To be aware of the possibility of the search is to be on to some…
ZOMBIE Bugs!!!: Mind Blow 12
Nes breathalyzer and what’s so great about these balls? Ah, Vsauce! Kevin here. This is mind blow. In Sonic CD, don’t make the blue blur wait too long or eventually he’ll say, “I’m a game,” and he’s dead. What Yoshi’s Island contains the zombie glitch? Wa…
Noble’s Story | How Khan Academy helped me get into my dream college
That was one of the best days of my life. Honestly, like signing day, I just knew that all the hard work that I put into this dream finally paid off. I’m Noble; I’m a freshman at Brown University. I’m a receiver on the football team. It became apparent t…
Charlie Munger: We're Playing With Fire (Interview)
[Music] Hey guys, welcome back to the channel. We got something really cool to talk about today: Charlie Munger. As you guys know, one of my favorite investors, he recently did a 45-50 minute interview with the California Institute of Technology, which i…
Writing whole numbers as fractions
We’re told that each rectangle is a hole, so this is a hole right over there. That’s one hole, and so this is two holes. Which expressions describe the shaded part of the picture? They’ve shaded in everything and they say, “Choose to answer.” So pause th…
Doing donuts in $150k+ cars…on the front lawn
[Music] Let me show my hair first. What’s up you guys? Brendan. So, I’m so excited this morning! I am on my way to Frank Out, he’s OC, a private car. If it’s working, backyard. He has an insanely cool house in the middle of Los Angeles, and the inside ya…