yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Manipulating expressions using structure (example 2) | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told, suppose ( a + b ) is equal to ( 2a ). Which of these expressions equals ( b - a )?

All right, I encourage you to pause the video and see if you can figure that out. Which of these expressions would be equal to ( b - a )? It's going to just involve some algebraic manipulation.

All right, let's work through this together. So we are told that ( a + b ) is equal to ( 2a ). The first thing I would want to do is get all my ( a )'s in one place, and one way I could do that is I could subtract ( a ) from both sides.

So if I subtract ( a ) from both sides, I am going to be left with just ( b ) on the left-hand side, and on the right-hand side, I'm going to be left with ( 2a - a ). Well, that's just going to be ( a ). If I have two of something, and I subtract one of them, take away one of them, I'm going to have just one of those something—it's equal to ( 1a ).

So, we want to figure out what ( b - a ) is. Well, luckily, I can figure that out if I subtract ( a ) from both sides. So if I subtract ( a ) from both sides, well then I'm going to get on the left-hand side ( b - a ), which is what we want to figure out, is equal to ( a - a ), which is equal to zero.

So ( b - a ) is equal to ( 0 ), which is not one of the choices. All right, so let's see if we can figure out some other things over here. So ( b - a ) is equal to zero, but that is not one of the choices.

All right, is there any other way to manipulate this? No?

I could just go straight ahead and subtract ( 2a ) from both sides, and I would get ( b - a ) is equal to zero. Oh, this is interesting; this is a tricky one.

So ( b - a ) is zero. Well, if ( b - a ) is equal to zero, if we take the negative of both sides of this... If we take the negative of both sides, if we multiply both sides by -1—well, on the left-hand side, we get ( a - b ), and on the right-hand side, we still get zero.

If ( b - a ) is zero, then the negative of it, which is ( a - b ), is also going to be equal to zero. And that's this choice. Let me do that in a little darker color. That is this choice right over there. That was a good one!

More Articles

View All
Why Its Good That The Democrats Lost
I’m going to stay on this theme for a moment and call this perhaps the greatest night the Democratic party can ever have if they lose. Let me explain that I was very troubled just over a 100 days ago when they circumvented the Democratic process and anoin…
Life at Sea | Making the Disney Wish | Mini Episode 6
My name is Sheikha. I’m the senior entertainment manager on board the beautiful Disney Wet. I just love being around the different kinds of people that we have on board and the uniqueness of living at sea. My favorite part of what I do here is the people…
Mars 101 | MARS
[Music] In the early formation of the solar system, when all the planets were being formed, Mars and Earth were actually surprisingly similar. Mars at one time was once fertile, temperate, much like Earth. And, uh, something happened to it. There are mas…
Justification with the mean value theorem: table | AP Calculus AB | Khan Academy
The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification. Well, to use the mean…
What If The World is Actually a Prison? | The Philosophy of Arthur Schopenhauer
What if this world is actually one giant prison? When the 19th-century philosopher Arthur Schopenhauer observed the amount of pain that we experience during our lifetimes, he concluded that it’s not happiness and pleasure we’re after, but a reduction of t…
When Family Asks Me For Money!
More money, more problems. Yes, yes, I’ll tell you something about money: it’s a fantastic thing because it buys you freedom, but it makes your life complicated because a lot of people want some of it from you for free, particularly family members. This i…