yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
How Much I Make With 3 Million Subscribers
What’s up you guys! It’s Graham here. So I’m sure at some point you’ve been scrolling YouTube. You come across your favorite creator, and then you start to think to yourself, “How much money are they making?” No? Just me? Alrighty then! I’ll end the vide…
Solving system with elimination | Algebra | Khan Academy
So we have a system of two linear equations here. This first equation, (x - 4y = 8), and the second equation, (-x + 3y = 11). Now what we’re going to do is find an (x) and (y) pair that satisfies both of these equations. That’s what solving the system act…
TAOISM | Be Like Water
Water is the softest and most yielding substance. Yet nothing is better than water for overcoming the hard and rigid, because nothing can compete with it. Lao Tzu Many people are hijacked by the rigidity of their minds. Thinking in categories and fixed …
Dihybrid cross and the Law of Independent Assortment | High school biology | Khan Academy
In this video, we’re going to build on our understanding of Mendelian genetics and Punnett squares by starting to think about two different genes. So we’re going back to the pea plant, and we’re going to think about the gene for pea color and the gene for…
Doctor vs Plumber: Which person is WEALTHIER at Age 42
What’s up you guys, it’s Graham here! So I read a really interesting article the other day that showcased the difference between the net worth of a plumber and that of a doctor. The results were actually pretty surprising regarding who ends up having a hi…
Baker v. Carr | National Constitution Center | Khan Academy
[Kim] Hi, this is Kim from Kahn Academy. Today we’re learning more about Baker versus Carr, a landmark Supreme Court case decided in 1962. Baker versus Carr grappled with an incredibly important issue: whether one person’s vote is equal to another person’…