yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
Khan Academy’s 100&Change proposal: World-class diplomas for anyone, anywhere
Hi, I’m Sal Khan, founder of the Khan Academy. We’re a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. There are tens of millions of people learning on Khan Academy who want to prove what they know, who want…
The True Cost of the Royal Family Explained
Look at that! What a waste! That Queen living it off the government in her castles with her corgis and gin. Just how much does this cost to maintain? £40 million. That’s about 65p per person per year of tax money going to the royal family. Sure, it’s stil…
See How Chainsaw Art Keeps This Guy Out of Trouble | Short Film Showcase
[Applause] There’s a lot of people out there that call themselves artists, but there’s no bad art. The beauty’s in the eye of the beholder. [Music] [Applause] [Music] [Applause] [Music] Chainsaw carving has a certain element of theater to it; it’s kind of…
A Pitbull Becomes a Service Dog | Cesar Millan: Better Human Better Dog
For the past five years, Johns faced a brain tumor in the fight of his life. His weakened state has caused Goliath to become fixated on protecting him. Today, Goliath faces Caesar’s final challenge, which will determine if he’s balanced enough to be of se…
Khan Stories: Shrey
It was amazing! I don’t think I’ll ever forget in my life. “Mom, I made it to Harvard!” I mean, it was like a Bollywood Hollywood kind of a sentence. I’m Srey. Um, I’m a freshman at Harvard, class of 2022, and I’m from New Delhi, India. I’ve been using …
5th roots | Mathematics I | High School Math | Khan Academy
Let’s see if we can calculate the fifth root of 32. So, like always, pause the video and see if you can figure this out on your own. So, let’s just remind ourselves what a fifth root is. So, if x is equal to the fifth root of 32, that’s the same thing as…