yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
How To Unmask The Narcissist's Double Life | STOICISM
Have you ever felt like someone could see right through you, tapping into your deepest fears and desires, and manipulating them to their own advantage? Imagine living in a world where your very emotions are the plaything of a master illusionist, someone w…
Warren Buffett gives advice on calculating the intrinsic value of a company
This is Phil McCall from Connecticut. I wondered if you could comment on a subject I don’t think you like to talk about very much, which is intrinsic value and the evolution over the past 10 or 12 years of going to off and on, but giving us investments an…
Great founders actually build.
So this question is: what are the biggest red flags for startup founders that you’ve interviewed? There are many, many things that I look for in interviews, but one of the most important things I look for is the ability for the team to build the product …
Irregular plural nouns | foreign plurals | The parts of speech | Grammar | Khan Academy
Hello Garans. Today we’re talking about another kind of irregular plural noun, and that is the foreign plural. Those are words that are borrowed into English from some other language, words like fungus, or cactus, or thesis, or criteria. These words come …
Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy
So we’re told that ( F(2) ) is equal to 12. ( F’ ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is. Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of t…
Pterosaurs 101 | National Geographic
(Dramatic music) - [Narrator] Much like today’s birds, pterosaurs ruled Earth’s Mesozoic skies. (Pterosaur cawing) Adapting to many different habitats while their dinosaur cousins roamed below. But these were no birds. Pterosaurs were flying reptiles, and…