yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
Worked example: Calculating molar mass and number of moles | AP Chemistry | Khan Academy
We are asked to calculate the number of moles in a 1.52 kilogram sample of glucose. So, like always, pause this video and try to figure this out on your own. This periodic table of elements will prove useful. All right. Now, if we’re trying to figure out…
Urska Srsen Speaks at Y Combinator Female Founder Conference 2016
Hello. Before I actually started talking about myself for the next 20 minutes, I wanted to kick off this speech with a quote from a woman that I admire a lot, and who unfortunately died last week. For those of you who don’t know her, Zaha Hadid was an Ira…
Gordon Ramsay Explores the Medina of Fez | Gordon Ramsay: Uncharted
[Music] I’m in Morocco, North Africa, to discover the hidden colony secrets of this incredible country. I’ve always loved Moroccan food because every bite is steeped in history. Over the centuries, the Arabs, Spanish, Ottomans, and French have all left th…
2015 AP Calculus AB 2a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let f and g be the functions defined by ( f(x) = 1 + x + e^{x^2 - 2x} ) and ( g(x) = x^4 - 6.5x^2 + 6x + 2 ). Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above. So here I have the graphs of the two functions, and …
How Close Are We to Flying Cars? | How Sci-Fi Inspired Science
You’re stuck on the highway, bumper-to-bumper traffic. A commute that should have taken a few minutes has now somehow become an hour-long endeavor. And this happens. We all have one of two thoughts: one, monster truck; or two, wish I could just fly over t…
Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy
Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification. All right, pause this video and see…