yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
Will We Ever Visit Other Stars?
Hey, Vsauce. Michael here. I’ve been watching Bravest Warriors on Cartoon Hangover lately. It’s great, it was created by Pendleton Ward, and in the show, teenagers zip around the universe visiting star systems and planets, and here is my question: When wi…
Nintendo FURNITURE??? -- Mind Blow #15
A real Zelda Treasure chest? And coming soon from 7-Eleven: two cups, one straw. Vsauce, Kevin here. This is Mind Blow. A few years we were treated to a functioning NES controller coffee table. Well, here’s a brand new one with custom NES art and a place…
Electromagnetic waves | Physics | Khan Academy
What’s common between a Wi-Fi router, our bodies, and an incandescent bulb? We all give out electromagnetic waves. But why do we do that? And why are they all so different? How do we use some of them for wireless communications? Let’s answer all of them. …
Butterfly Farming IS AMAZING - (Full Life Cycle) - Smarter Every Day 96
Hey, it’s me, Destin. Welcome back to Smarter Every Day! I did a video and I put Mr. John, the butterfly farmer, in it, and you had a bunch of questions about butterfly farming. So, we’re going to do a video about butterfly farming. Is that okay with you?…
Telling time to the nearest minute: labeled clock | Math | 3rd grade | Khan Academy
Let’s look at this clock and see if we can tell what time is shown on it. First thing, when we look at a clock, we have two hands, and that’s because time is told in two parts. Time is told in hours; that’s part, and on a clock, the hours are represented…
Shutting down or exiting industry based on price | APⓇ Microeconomics | Khan Academy
We’ve spent several videos already talking about graphs like you see here. This is the graph for a particular firm; maybe it’s making donuts, so it’s in the donut industry. We can see how the marginal cost relates to the average variable cost and average …