yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
Homeroom with Sal - Is College Right for Me? (Part 1)
Hi everyone, Sal Khan here from Khan Academy. Welcome to our special homeroom edition on “College: Is College Right for Me?” or I guess, “Is College Right for You?” We have a very exciting group of panelists: young people who are maybe a few years ahead o…
Katy Perry - Hot N Cold (Official Music Video)
(church bell ringing) Katy, do you take Alexander to be your lawfully wedded husband? I do. Alexander, do you take Katy to be your lawfully wedded wife? (upbeat pop music) ♪ You change your mind ♪ ♪ Like a girl changes clothes ♪ ♪ Yeah, you PMS like a…
Shark Tank Star Kevin O'Leary's Morning Routine - A Day in the Life of a Multi-Millionaire
I’m Mr. Wonderful here, and I want to talk about this week’s episode of Ask Mr. Wonderful. It’s inspired by an email question from Atlanta. I’m gonna read it to you; you see what I mean. Hi, my name is Elizabeth from Atlanta. I’m one of your Instagram fo…
Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy
Let’s see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity. So let’s just think about what’s going on in the numerator and then think about what’s going on in the denominator. In the numerator, we have (…
Homeroom with Sal & Rachel Skiffer - Tuesday, June 23
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom, which is our way of staying in touch. It started with obviously all the school closures and social distancing with COVID, but now it’s really just evolved into an interesting for…
Tangents of polynomials | Derivative rules | AP Calculus AB | Khan Academy
What you see here in blue, this is the graph of ( y ) is equal to ( f(x) ) where ( f(x) ) is equal to ( x^3 - 6x^2 + x - 5 ). What I want to do in this video is think about what is the equation of the tangent line when ( x ) is equal to 1, so we can visua…