yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
250 SUBSCRIBER GIVEAWAY RESULTS!
252 subscribers! What is going on, guys? Hold on, we’re the 15. This video will be a lot lower quality than you’re used to from the channel. I don’t have access to a computer that can do the same type of editing that I usually do for my videos because I’m…
Death & Dynasties
Rulers are often related, with power passing from member to member, forming a dynasty. This occurs not just with royalty or dictators, but also with representatives in a democracy. Families frequently pass power or compete with other families for a turn a…
The Rainiest Place On Earth
[Derek] This is the world’s largest rainfall simulator, located in Tsukuba, Japan. Now, I know that it just looks like a warehouse with a lot of sprinklers, but this building is incredibly important. The science conducted here keeps tens of millions of pe…
Revealing My ACTUAL Net Worth
What’s up you guys, it’s Graham here. So I felt like doing something a little bit different today, and instead of the normal investing related content, I’m gonna be using myself as an example and breaking down in detail my net worth for every single year …
Nail Polish | Ingredients With George Zaidan (Episode 4)
What’s in here? What does it do? And can I make it from scratch? It’s the stuff inside your sun. Ingredients way back in the day, nail polish was actually pretty simple. The Egyptians used henna and the Chinese used a mixture of egg white, beeswax, gelat…
Elon Musk to Jordan Peterson: “Life had no Meaning”
So, I wondered what’s motivated you? Cuz you push in so many directions simultaneously. You have to be really highly motivated to do that. And so, you figured out that the question, in a sense, was the answer. Yeah, the question—or I said another way—tha…