yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Creating Objects That Build Themselves | Nat Geo Live


2m read
·Nov 11, 2024

Skylar Tibbits: We focus on designing physical components that can build themselves. So, this project proposes that you can have self-assembly at very large scales. This is interesting for construction scenarios where it's hard to get to; it's dangerous. There are extreme environments; it's hard to get people or machines, or where it's difficult to build things in space, underwater, etc. That we could potentially deposit materials and they could come together to build highly functional things. In this case, it's a ten-by-ten-by-ten space frame. When the helium dies, you're left with a large rigid structure.

The other category of research we look at is how to program physical materials to change shape and property on demand. On the top left is our materials and geometry. That's the obvious stuff. Everything we know in the physical world is made out of materials and geometry. Each one of those, though, responds to different types of energy. If you have moisture, you might want to use wood. If you have metal, you might want to use heat to activate it. And the way that we design the geometry and how those materials come together creates mechanical transformation and allows us to control how it folds, curls, bends, or twists.

And we've released three materials so far. The first one is programmable carbon fiber, textiles, and wood. With wood, there's a long history of using wood as an active building material. From Japanese joinery that would use moisture to make more precise tight joints to contemporary examples. But there's two main problems. One of the problems is that there's a lot of energy that goes into forcing plywood to form into arbitrary shapes. You have to force it, steam it, and have molds. The other is that you are constrained by the grain direction that you can find in the forest.

So, we print wood; we actually deposit wood. We chop it up into a pulp with sawdust and adhesive or plastics; we're able to print different grain directions. Two-dimensional patterns, three-dimensional patterns that allow it to fold, curl, twist and go from any one arbitrary shape into any other arbitrary shape. So, we believe that today we program computers and machines, and tomorrow we'll program matter itself. Thank you. (applause)

More Articles

View All
This equation will change how you see the world (the logistic map)
What’s the connection between a dripping faucet, the Mandelbrot set, a population of rabbits, thermal convection in a fluid, and the firing of neurons in your brain? It’s this one simple equation. This video is sponsored by Fast Hosts, who are offering UK…
Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy
So we’re told that ( F(2) ) is equal to 12. ( F’ ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is. Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of t…
The Truth About Toilet Swirl - Southern Hemisphere
Today, we’re trying something that’s never been done before. I have made this video and Destin has made a video on Smarter Every Day, and we want you to play them both at the same time. So there’s a link to his video down in the description, so find a way…
Uranium: Twisting the Dragon's Tail
Did you know that after the 1986 Chernobyl nuclear disaster at reactor number four, the other reactors on that site were not shut down permanently? In fact, they were kept running, producing electricity by workers who were brought in by train every day to…
15 Most Common Money Laundering Businesses
Have you ever noticed how some shops and businesses around you stay in business despite the lack of customers? If a business has a really complicated business structure where it’s hard to see the real beneficiary, has a prime real estate location but bare…
Valid discrete probability distribution examples | Random variables | AP Statistics | Khan Academy
Anthony Denoon is analyzing his basketball statistics. The following table shows a probability model for the result from his next two free-throws, and so it has various outcomes of those two free-throws and then the corresponding probability: missing both…