yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
Inside The $100,000,000 Empire Of Dhar Mann
What’s up, you guys? It’s Graham here, and today I’d like to introduce you to one of the most successful entrepreneurs you probably didn’t expect, Darman. At the age of 30, after nearly having to move back in with his parents, he developed a series of mot…
Reflecting & compressing functions | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told g of x is a transformation of f of x. The graph below shows f of x as a solid blue line. So this is the graph of y is equal to f of x, and the g of x is a dotted red line. So that’s the graph of y is equal to g of x. What is g of…
Deja Vu: Experiencing the Unexperienced
Our memory is remarkable; it allows us to remember things—the good and bad—and helps us make sense of everything around us by preserving details and events that we can later revisit. It’s a crucial ability, without which we would have no semblance of who,…
15 Signs You Get Played By Others
Do you feel like you’re always the third wheel? The one who is easily taken advantage of, or the one whose opinions don’t matter? Well, in this video, we’ll explore why you always get played and what you can do to change that. From lacking presence and fa…
How NOT to Get Offended (Stoic Wisdom for a Thicker Skin)
It’s quite easy to offend someone these days. Even me stating this observation can rub someone up the wrong way. In the age of social media, we get bombarded with crude language, opinions we don’t like, and stuff that’s downright mean. That’s probably why…
How They Caught The Golden State Killer
This video includes a discussion of serious crimes, which may be disturbing for some viewers, so I wanted to let you know that upfront. But I think it’s necessary to talk about these crimes in some detail for reasons that will become apparent. In the smal…