yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
The Wonders of Urban Wildlife | Podcast | Overheard at National Geographic
So I’m a solo hiker. I prefer to hike alone, and I’m a meanderer, so I have no idea where I’m going. It’s July 2021, and I’m meandering with Danielle Lee, a biology professor at Southern Illinois University Edwardsville. We are in our neighborhood in Nort…
Why your life is so boring
When we think about our life, we usually think about it in the form of a story. You know, first we were born, and then we did some things and made some memories, and now we’re here and we work in our job or whatever. But in the future, we plan on doing mo…
What Is Light?
Light is the connection between us and the universe. Through light, we could experience distant stars and look back at the beginning of existence itself. But, what is light? In a nutshell, light is the smallest quantity of energy that can be transported: …
Multiplying decimals word problems | Decimal multiplication | Grade 5 (TX TEKS) | Khan Academy
We are told James’ dog weighs 2.6 kg, and How’s dog weighs 3.4 times as much as James’ dog. How much does How’s dog weigh? Pause this video and try to figure that out. Well, How’s dog is 3.4 times the weight of James’s dog, which is 2.6. So we just have …
10 Monthly Routines To Skyrocket Your Productivity
You know, locks are the routines we build. They’re not just about getting more things done. They’re designed to enhance our overall well-being and efficiency, helping us to become the best version of ourselves. So whether you’re a seasoned go-getter or ju…
Can causality be established from this study? | Study design | AP Statistics | Khan Academy
A gym that specializes in weight loss offers its members an optional dietary program for an extra fee. To study the effectiveness of the dietary program, a manager at the gym takes a random sample of 50 members who participate in the dietary program and 5…