yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
Walking Alone in the Wilderness: A Story of Survival (Part 2) | Nat Geo Live
Why I’m here today, talking to you, here, in this amazing special place? It’s because of a slug story. Basic slug story, you know how those stories go? You know, I couldn’t have my pocket money when I was a kid. Grow up in Switzerland. Picture this. This …
The Simplest Math Problem No One Can Solve - Collatz Conjecture
This is the most dangerous problem in mathematics, one that young mathematicians are warned not to waste their time on. It’s a simple conjecture that not even the world’s best mathematicians have been able to solve. Paul Erdos, a famous mathematician, sai…
A Belief in Black Magic | Uncensored with Michael Ware
NARRATOR: Finally, the [inaudible] leader agrees to talk. [non-english speech]. He is speaking on behalf of everyone. He says, “Yeah, I’m a pastor. I’m a leader. I’m a Christian. I’m a father. But this belief is part of my life. And I can’t just take it o…
Warren Buffett is Selling His Largest Stock.
Have you or your investment manager’s views of the economics of Apple’s business or its attractiveness as an investment changed since Berkshire first invested in 2016? Here we go, everyone! Buffett is back, making headlines, and this was a big one: Warre…
Joe Exotic and the Tiger Trade | Trafficked with Mariana van Zeller
[Car horns blaring] [Phone ringing] [Jungle wildlife calls] OPERATOR (THROUGH PHONE): Prepaid call from. JOE EXOTIC (THROUGH PHONE): Joe Exotic. OPERATOR (THROUGH PHONE): An inmate at the Grady County Jail. This call is also subject to being recorded o…
Reflecting & compressing functions | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told g of x is a transformation of f of x. The graph below shows f of x as a solid blue line. So this is the graph of y is equal to f of x, and the g of x is a dotted red line. So that’s the graph of y is equal to g of x. What is g of…