yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
50 Founders Share Why They Applied To Y Combinator
Why did you apply to YC? Good question. The brand, community, mentorship. I think the perception is that YC is the batch and the fundraising, but really there’s so much more than that. We applied to YC for the mentorship and support towards the mentorshi…
Similar triangles & slope: proportion of segments | Grade 8 (TX) | Khan Academy
We’re told triangle PQR and triangle ABC are similar triangles. Which proportion shows that the slope of PR, right over here, equals the slope of AC? So pause this video and see if you can figure that on your own before we do this together. All right, w…
How to Get Rich in 2022
In this video, I’m going to share with you what I’ve learned from studying how to build wealth, as well as the practical lessons from my own wealth building journey. This advice and knowledge has helped me build a net worth of over $300,000, having just t…
Zeros of polynomials: matching equation to graph | Polynomial graphs | Algebra 2 | Khan Academy
We are asked what could be the equation of p, and we have the graph of our polynomial p right over here. You could view this as the graph of y is equal to p of x. So pause this video and see if you can figure that out. All right, now let’s work on this t…
Introduction to proteins and amino acids | High school biology | Khan Academy
What we’re going to do in this video is talk about proteins. Some of you all might already be familiar with them, at least in some context. If you look at any type of packaging on food, you’ll oftentimes see a label that has protein listed in a certain nu…
Just Let Go | The Philosophy of Fight Club
Life is short. It’s ending one minute at a time. Why waste it on fulfilling other people’s expectations? This is just one of those questions presented in a novel written by Chuck Palahniuk named Fight Club. The film version of Fight Club, directed by Dav…