yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
Comparing features of quadratic functions | Mathematics II | High School Math | Khan Academy
So we’re asked which function has the greater Y intercept. The Y intercept is the y-coordinate when X is equal to zero. So F of 0, when X is equal to zero, the function is equal to, let’s see, F of 0 is going to be equal to 0 - 0 + 4, is going to be equa…
Will Mars Be a World Without Laws? | MARS
Law works because it’s effectively backed up by a state, and that kind of breaks down in space a little bit. The whole legality of who owns what is going to fill volumes. There are international treaties that relate to space. The UN Outer Space Treaty 196…
Decomposing shapes to find area (grids) | Math | 3rd grade | Khan Academy
Each small square in the diagram has a side length of one centimeter. So, what is the area of the figure? We have this figure down here in blue, and we want to know its area. Area is the total space it covers, and we’re also told that each of these little…
How Are National Park Trips Different From What They Used to Be? | National Geographic
I think that every generation experiences the natural world differently. Like the 50s and 60s, like this glorified Yellowstone, go see the bears. Maybe during my parents’ generation, the park system was sort of blooming and emerging, whereas now it’s a bi…
Elephant Cleverly Steals Sugar Cane off a Truck in Thailand | Secrets of the Elephants
Thailand Highway 3259 is a sugarcane transport road. Thousands of farmers use it to get their crops to the refinery. But this highway has a toll collector. Locals call him the Don. And this is his territory. He’s a master dealmaker, calculating risk vers…
Why being yourself is ruining your life
Just be yourself has become sort of a statement that people venerate these days. People celebrate just be yourself probably because it kind of feels like a warm hug. Just be yourself and everything’s gonna be okay. It feels kind of empathetic, understandi…