yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
SPACE CATS !!! - Smarter Every Day 85
Hey, it’s me D. Welcome back to Smarter Every Day! So, a couple of weeks ago, I asked a question here on Smarter Every Day in hopes that it would be beamed up to the space station so the astronauts could answer. Well, that happened! Why don’t we take the …
What are affixes? | Reading | Khan Academy
Hello readers! Today we’re going to talk about things called affixes. One of the things that I love about the English language is how flexible its words can be. You can take little word parts and stick them together to make new words. If I read something…
Detonation vs Deflagration - Smarter Every Day 1
Hey, it’s me, Destin. So, um… we don’t have really awesome accents and we don’t have a lot of money, but we do know our guns. And we are rocket scientists. So, we’re gonna start a new web series called Smarter Every Day. [Music] Uh, we’re gonna try to te…
How Do Cartels Get Their Weapons? | Trafficked with Mariana van Zeller
[engine revving] [suspenseful music] MARIANA VAN ZELLER: In my quest to expose how American guns are trafficked throughout Mexico, I never expected to be headed out to sea. But as we move deeper into the waters, these smugglers break down their operation…
PURPOSE of WEALTH (Pt3): COMFORT
Hello Alers, and welcome back as we continue our purpose of wealth series. If you haven’t watched the first two parts covering freedom and security, we recommend you start there, as this is the first one to touch on the positive material benefits brought …
Using units to solve problems: Toy factory | Working with units | Algebra I | Khan Academy
We’re told a factory makes toys that are sold for ten dollars a piece. The factory has 40 workers, and they each produce 25 toys a day. The factory is open five days a week. What is the total value of toys the factory produces in a day? Pause this video …