yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
15 Questions to Unlock Your Potential
Hey, we’re going to have a heart-to-heart today, all right? This is a secret tool that we’ve used for decades. Every couple of years, we go through these exact questions to have a reality check with ourselves, and today we’re going to do it together. Save…
Mohnish Pabrai: How to Stop Picking Losing Stocks (Mohnish Pabrai's Checklist)
Studying investing legend Manish Pibrai has made me a better investor, and as a result, has helped make me more money when investing. In this video, we are going to talk about a concept that, in hindsight, seems so simple and easy to apply to your own inv…
Worked example: Calculating amounts of reactants and products | AP Chemistry | Khan Academy
We’re told that glucose (C6H12O6) reacts with oxygen to give carbon dioxide and water. What mass of oxygen in grams is required for complete reaction of 25.0 grams of glucose? What masses of carbon dioxide and water in grams are formed? So pause this vid…
My top three favourite quotes.
If you’re the smartest person in the room, you’re in the wrong room. Here’s the top three quotes that I just love to say. First one is: when you actually think that you’ve exhausted every single possibility trying to solve a problem, just remember this—…
YOU Own the Moon. And Mars. And Venus. #kurzgesagt #shorts
You own the moon and Mars and everything else in space, really. Call a space lawyer; they’ll tell you about the Outer Space Treaty. It was born from the Cold War when countries were racing to space. It forbids any of them from taking over celestial bodies…
The Value of Rooftop Farming for the Community | Farm Dreams
Things are living, and things are growing on the roof, so they’re always living and growing. The flowers look amazing! Oh man, and you know the flowers are bringing the pollinators. Yes, we got the butterflies coming; we got the birds coming. So it’s goin…