yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
Supplemental insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about supplemental insurance. Now, it is what the words describe it as; it is a supplement to usually some other existing insurance. It’s insurance above and beyond things that you might already have. So there’s a lot of exampl…
Pristine Seas: The Global Expedition Launches in the Pacific | National Geographic Society
The global Expedition is kicking off with our own purpose modified vessel, the MV Argo. This is the largest marine conservation effort ever attempted to protect the world’s ocean, starting in the Pacific. [Music] Life on Earth wouldn’t exist without hea…
A Real Life Haptic Glove (Ready Player One Technology Today) - Smarter Every Day 190
Hey, it’s me Destin, welcome back to Smarter Every Day. I love Ready Player One. It’s a fascinating book about this virtual world called The Oasis, based here in Columbus, Ohio. If we’re ever gonna get to a virtual world, we have to have ways to interact …
Strategies for multiplying multiples of 10, 100 and 1000
Do in this video is think about multiplying our strategies for multiplying numbers that are expressed in terms of hundreds or thousands or tens. So we see an example right over here: we have 800 times 400. Now, like always, I encourage you to pause this …
Shouldn't We Just Copy Warren Buffett's Portfolio?
I could not come up with these ideas on my own. I came up with this idea from Warren and Charlie, and I copied it. So, one of the most important models that you can adopt is the model of cloning. When you see someone doing something smart, uh, just incorp…
15 Sacrifices You Need to Make If You Want To Be Rich
Hey there, my friend. Now, in this video, we’re going to be looking at reality, not wishful thinking. Okay? We recommend re-watching this video at least once every month in order to not lose track of what it takes, because the truth is, in order to get ri…