yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: alternating series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

What are all positive values of P such that the series converges?

So let's see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}).

There's a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 to 2 to 3, this is just going to alternate between positive 1, negative 1, positive 1, negative 1. So we're going to have alternating signs, so that might be a little bit of a clue of what's going on.

Actually, let's just write it out. This is going to be

  • when (n = 1), this is going to be (1^{2}), so it's going to be positive 1, so it's going to be (\frac{p}{6});
  • when (n = 2), this is going to be (1^{3}), so it's going to be minus (\frac{p}{6^{2}});
  • then plus (\frac{p}{6^{3}});
  • and I could even write (\frac{p}{6^{1}}) right over here;
  • then minus (\frac{p}{6^{4}})
  • and we're going to just keep going plus minus on and on and on and on forever.

So this is clearly a classic alternating series right over here. We can actually apply our alternating series test. Our alternating series test tells us that if this part of our expression, the part that is not alternating in sign, I guess you could say, if this part of the expression is monotonically decreasing, which is just a fancy way of saying that each successive term is less than the term before it.

And if we also know that the limit of this as (n) approaches infinity, that also has to be equal to zero. So the limit as (n) approaches infinity of (\frac{p}{6^{n}}) also has to be equal to zero.

So under what conditions is that going to be true? Well, to meet either one of those conditions, (\frac{p}{6}) has to be less than 1. If (\frac{p}{6}) was equal to 1, if for example (P) was 6, well then we wouldn't be monotonically decreasing. Every term here would just be one. It would be (1^{1}), (1^{2}), and on and on and on.

And if (p) is greater than 6, well then every time we multiply by (\frac{p}{6}) again we would get a larger number over and over again, and the limit for sure would not be equal to zero.

So we could say (\frac{p}{6}) needs to be less than 1. Multiply both sides by 6 and you get (P) needs to be less than 6.

They told us for what are all the positive values of (P). So we also know that (P) has to be greater than zero. Therefore, (p) is greater than zero and less than six, which is that choice right over here.

Once again, we're not going to say less than or equal to six, because if (P) was equal to six, this term is going to be (1^{n}) and so we're just going to have this. Would be one, this would be one. It would be 1 minus 1 plus 1 and on and on and on forever.

So definitely like that first choice.

More Articles

View All
The Stock Market Is About To Go Wild | DO THIS NOW
What’s Graham up? It’s guys you hear. So today, we will attempt to answer one of the oldest and most elusive questions in the entire universe: why the stock market is about to go absolutely insane throughout these next few months. With some of the bigges…
My advice to be successful if you’re a teenager watching YouTube right now…
What’s up you guys, it’s Graham here. So it seems like a large part of my audience are all teenagers or people like in high school. Sure, some in middle school or like people not quite 18. I get asked all the time, like what can I do when I’m still at hig…
15 Reasons Why People Look Down On You
Humans are judgmental. And while most people won’t outright insult someone, our minds still form very quick, firm opinions about people. If you think someone looks down on you, well, honestly, they actually might. If something feels off with the way they …
Making a house out of mud bricks. (Real life minecraft) - Smarter Every Day 18
Here are Smarter Every Day, we’ve decided to change the format and make learning very very serious. And by serious I mean… [Thump, splash] - Seriously awesome! [Crowd yells] [Crowd laughs] (Destin) Alright, today we’re gonna learn about mud in Africa. Th…
Jorge Paulo Lemann on building a more equitable future in Brazil | Homeroom with Sal
Support all of you in other ways with daily class schedules to kind of approximate keeping the learning going on during the closures. Webinars for teachers and parents, and also this home room is really just a way to stay connected, talk to interesting pe…
My Response To FTX
What’s up, you guys? So I know this video is longer to do, but I purposely wanted to wait until I had all the facts. It could actually come to you with a concrete solution of what’s being done moving forward. To start, let’s talk about FTX US. This is a …