yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ratios with tape diagrams


3m read
·Nov 11, 2024

We're told Kenzie makes quilts with some blue squares and some green squares. The ratio of blue squares to green squares is shown in the diagram. The table shows the number of blue squares and the number of green squares that Kenzie will make on two of her quilts.

All right, this is the table they're talking about. Based on the ratio, complete the missing values in the table. So why don't you pause this video and see if you can figure it out?

Well, first let's think about the ratio of blue to green squares. So for every three blue squares—let me do that same, a similar color—for every three blue squares, we are going to have one, two, three, four, five green squares. So the ratio of blue to green is three to five.

In quilt A, she has 21 blue squares. So she has 21 blue squares. How many green squares would she have? Well, to go from 3 to 21, you have to multiply by 7. And so, you would take 5 and then multiply that by 7, so you'd multiply 5 times 7 to get to 35. As long as you multiply both of these by the same number, or divide them by the same number, you're going to get an equivalent ratio. So 21 to 35 is the same thing as 3 to 5.

Now we have a situation in quilt B; they've given us the number of green squares, so that's 20. Well, how do we get 20 from 5? Well, we would multiply by 4. So if you multiply the number of green squares by 4, then you would do the same thing for the number of blue squares: 3 times 4, 3 times 4 is going to be equal to 12.

Twelve blue squares for every 20 green squares is the same ratio as three blue squares for every five green squares. Let's do another example here. We are told the following diagram describes the number of cups of blue and red paint in a mixture. What is the ratio of blue paint to red paint in the mixture? So try to work it out.

All right, so let's just see. We have one, two, three, four, five, six, seven, eight, nine, ten—ten cups of blue paint for every one, two, three, four, five, six cups of red paint. So this would be a legitimate ratio: a ratio of 10 cups of blue paint for every 6 cups of red paint.

But this isn't in, I guess you could say, lowest terms or most simplified terms because we can actually divide both of these numbers by two. So if you divide ten by two, you get five—do that blue color; and if you divide six by two, you get three. So one way to think about it is for every five blue squares you have three red squares in this diagram, in this tape diagram—that's sometimes called—or you could say for every five cups of blue paint you have three cups of red paint in our mixture.

And you can even see that here: three cups of red paint and one, two, three, four, five—five cups of blue paint, and you see that again right over here. Let's do another example here.

We're told Luna and Ginny each cast magic spells. The ratio of spells Luna casts to spells Ginny casts is represented in this tape diagram. All right, based on the ratio, what is the number of spells Ginny casts when Luna casts 20 spells? Pause this video and see if you can work it out.

All right, so let's just see the ratio here. For every one, two, three, four spells that Luna casts, Ginny casts one, two, three, four, five spells. So the ratio is four to five. But if Luna casts 20 spells—so if Luna casts 20 spells—well, to go from 4 to 20, we had to multiply by 5.

And so we would do the same thing with the number of spells Ginny casts: you'd multiply that by 5. So it's 25. So 4 Luna spells for every 5 Ginny spells is the same thing as 20 Luna spells for every 25 Ginny spells.

And so how many spells does Ginny cast when Luna casts 20 spells? She casts 25, and we're done.

More Articles

View All
Second-order reactions | Kinetics | AP Chemistry | Khan Academy
Let’s say we have a hypothetical reaction where reactant A turns into products. Let’s say the reaction is second order with respect to A. If the reaction is second order with respect to A, then we can write the rate of the reaction is equal to the rate co…
Champion Sidecar Racer Looks Back on a Thrilling Life | Short Film Showcase
[Music] Way sidecar racing on the high-speed surface of the Grand Prix circuit is a job for exceptional men. 70 M of hair-raising work for drivers and passengers alike. But passenger is scarcely the word for the man in the chair at these events. “My nam…
Episode 1 Recap | MARS
Previously on Mars, we knew Mars wouldn’t welcome us with open arms. Warning system offline. Permission was switched from primary to backup. “Do it. Prepare for V’s propulsion.” We were ready to give everything to get there. Mission Control, us in datal…
Arian Controversy and the Council of Nicaea | World History | Khan Academy
In previous videos, we have talked about how Christianity evolved and developed under the Roman Empire. In particular, we saw that as we entered into the 4th Century, Christianity continued to be persecuted, in particular by the emperor Diocesan, who had …
Paul Buchheit: What are some things successful founders have in common?
So this was actually where the focused frugality obsession and love thing came from. I was actually trying to distill it down into a small enough number of words, and then I was going to try to translate it into emoji, but I failed at that part. I couldn’…
How Cicadas Become Flying Saltshakers of Death | Podcast | Overheard at National Geographic
What you’re hearing right now is a love song. Okay, you’re right, there’s cicadas—actually, male cicadas to be exact. But stay with me, because this isn’t an episode just about a really loud swarm of bugs. It’s actually a crazy tale about an ancient under…