yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: finite geometric series | High School Math | Khan Academy


4m read
·Nov 11, 2024

So we're asked to find the sum of the first 50 terms of this series, and you might immediately recognize that it is a geometric series. When we go from one term to the next, what are we doing? Well, we're multiplying by ( \frac{10}{11} ). To go from 1 to ( \frac{10}{11} ), you multiply by ( \frac{10}{11} ). Then you multiply by ( \frac{10}{11} ) again, and we keep doing this.

We want to find the first 50 terms of it, so we can apply the formula we derived for the sum of a finite geometric series. That tells us that the sum of, let's say in this case, the first 50 terms, actually let me do it down here.

The sum, the sum of the first 50 terms is going to be equal to the first term, which is 1. So, it's going to be ( 1 \times (1 - ( \frac{10}{11})^{50}) ) over ( 1 - \frac{10}{11} ).

I'm not going to solve it completely, but we can simplify this a little bit. This is going to be ( 1 - ( \frac{10}{11})^{50} ) over ( \frac{1}{11} ). So, this is the same thing as multiplying the numerator by 11.

So this is going to be equal to ( 11 \times (1 - ( \frac{10}{11})^{50}) ). You could try to simplify this even more, but this gets us pretty far. At this point, it is just arithmetic.

Let's do another one of these; this is kind of fun. So this is more clearly a geometric series. Let's just first think about how many terms we're going to take the sum of. You might be tempted to say, "Okay, I'm taking to the 79th power; there must be 79 terms here." But be very careful, because the first term is when we're taking things to the zeroth power. We're taking ( 0.99 ) to the zeroth power.

The second term is where we're taking it to the first power. The third term is where we're taking it to the second power. The fourth term is where we're taking it to the third power, and so on and so forth. So this right over here is the 80th term, the 80th term. So we want to find ( S_{80} ), and so this is going to be equal to our first term, which is going to be ( 1 \times (1 - (-0.99)^{80}) ) all over ( 1 - (-0.99) ).

At first, you might say, "Well, maybe the common ratio here is ( 0.99 )," but notice we have a change in sign here. The key thing is to say, "Well, to go from one term to the next, what are we multiplying by?" Well, to go from the first term to the second term, we multiply by ( -0.99 ). Then, to go to the next term, we're again multiplying by ( -0.99 ).

So the common ratio is not positive ( 0.99 ), but negative ( 0.99 ). So let me write that: ( -0.99 ), and of course that is going to be to the 80th power all over ( 1 + 0.99 ).

We could simplify this a little bit. This is all going to be equal to, well, that one we don't have to worry too much about. So this is going to be ( 1 - (-0.99)^{80} ). Actually, put parentheses there to make sure we are taking ( (-0.99)^{80} ).

Well, we're taking it to an even power, so it's going to be positive. So that's going to be the same thing as ( 0.99^{80} ), and all of that over. Well, subtracting a negative that's just going to be adding the positive, so all of that over ( 1.99 ).

We could attempt to simplify it more, but with a calculator, we could actually find this exact value or a close value. Actually, most calculators don't give you the exact value when you take something to the 80th power, but this is what that sum is going to be.

Let's do one more of these. All right, so here we have a series defined recursively, and so it's useful to just think about what it would actually look like. The first term is 10, and then the next term, so the second term ( a_2 ) is equal to ( a_1 \times \frac{9}{10} ).

Right, so the next term is going to be the previous term times ( \frac{9}{10} ). So it's going to be ( 10 \times \frac{9}{10} ), and then the next term is going to be that times, is going to be the second term. The third term is the second term ( \times \frac{9}{10} ). So ( 10 \times \left(\frac{9}{10}\right)^2 ).

The way it's written right now, I haven't written it as a finite geometric series, so let's say we want to take the sum. Let's say we want the sum of the first ( 30 ) terms. The sum of the first ( 30 ) terms is going to be equal to the first term. We've done this before, the first term times ( (1 - r^{30}) ) over ( (1 - r) ).

Let's see, we could ( 1 - \frac{9}{10} ). This is ( \frac{1}{10} ) right over here. You divide by ( 1 ); that's the same thing as multiplying by 10. So this is going to be ( 10 \times \left(1 - \left(\frac{9}{10}\right)^{30}\right) ).

Actually, these parentheses, you always want to, so I put parentheses there just to make sure we see that we're taking both the 9 and the 10, or the ( \frac{9}{10} ) to the 30th power—not just the 9.

So there you go. Did I? Yep, there you go; we're done.

More Articles

View All
Rent inflation, San Francisco affordable housing crises
The absence of dividends doesn’t just affect the legitimacy of stocks and stock investors; it proudly has the worst impact on low-income people who struggle to pay rent. The reality is, when companies hoard profits and end up with too much money to play w…
How a 22 year old got 500 LISTINGS as a PART TIME Real Estate Agent
In my first year, I have these moments where I wanted to quit. I was just like, this is not for me, you know? Maybe real estate’s not for me. Maybe I got so frustrated. I was helping this dude out, and then like halfway through, he’s like, you know what? …
Meet a Beautiful Beetle That Loves to Eat Poop | National Geographic
I turned a bison patty around and suddenly I’ve seen this sparkling emerald under the bison patty, and I didn’t expect it. If you find a horny beetle, it’s always a male. The rainbow scarabs are amongst the most beautiful of beetles; they are not the larg…
10 Stocks the Smart Money is Buying Right Now
[Music] Hey guys and welcome to the first video of the new money advent calendar! Whoa, what a big project! I am actually pretty nervous about this. I’m going to try and—no, I am going to do 25 videos in 25 days in the lead up to Christmas. So, uh, I hope…
What it’s like to be half Japanese half Turkish 🇯🇵/ 🇹🇷
What’s up! It’s me, Ruri. I’m a first-year medical student here in Turkey, and today we’re talking about what it’s like to be growing up half Japanese and half Turkish. I will timestamp every single thing that I mention in the description below so that yo…
Steve Jobs Didn’t Care What You Thought!
The ones of you that will be successful in here will develop the ability to distinguish signal from noise. The distractions are called noise, and the signal is what your mandate is, whatever that is. I worked for Steve Jobs years ago, developing all his e…