yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What if quantum physics could eradicate illness? | Jim Al-Khalili for Big Think


2m read
·Nov 3, 2024

  • Quantum biology is looking for and studying quantum phenomena, quantum effects inside living cells. On the one hand, physicists don't like applying their laws of physics and quantum mechanics inside living systems because biology's hard, it's complicated, it's messy. It's hard enough trying to find quantum effects in a sterile physics lab. How does that sort of quantum behavior survive inside the noisy, messy, complex environment of a living system? So physicists think, "No, that's too complicated for us."

Biologists don't want to think about quantum mechanics because, by and large, they don't understand the mathematics of quantum mechanics, and to be fair, molecular biology and genetics have progressed very well thank you very much, without any help from quantum mechanics. In the middle between the physicists and the biologists, are the chemists who say, "Well, of course, once you get down to the level of molecules, you're going to hit the quantum realm at some point. So you shouldn't be surprised that there must be some quantum effects. Don't go inventing new fields of science just to make it sound sexy somehow."

There may be quantum effects going on, but that doesn't play a functional role. You don't need that to explain how an enzyme catalyzes a particular chemical reaction or how bacteria photosynthesizes light and turns it into chemical energy; that's all biochemistry and it's all understood. My counterargument to that is that it may well be that there are quantum effects, for example, quantum tunneling, when a particle can jump from A to B in a way that's forbidden in our everyday world, but which is very familiar to us in physics and chemistry; that may well play a very fundamental role in certain biochemical processes.

For example, whether mutations can take place in DNA because a single proton, a hydrogen atom, has jumped from one strand of DNA to the other in a way that it wouldn't do if we didn't use the rules of quantum mechanics. Now, this could happen if it's given enough energy by, say, the surrounding water molecules that can nudge it over. But it can also quantum tunnel across, which means it can jump even though it doesn't have enough energy to get over the energy barrier. They can quantum tunnel through the hill, like a phantom walking through a brick wall.

Now, mutations are necessary for life, otherwise there will be no change. Given the current progress we're making in genetics, gene editing, in being able to manipulate the building blocks of life down at the molecular scale, if quantum tunneling plays an important part, might it be possible to inhibit certain mutations by inhibiting the ability of particles to quantum tunnel? That would suggest that quantum mechanics plays a role in the entire evolution of life on this planet. And that might have huge implications for our health.

More Articles

View All
Domain and range from graphs of quadratic and exponential functions | Khan Academy
So what we want to do in this video is try to figure out the domain and ranges of G of X that’s depicted right over here and H of X that’s depicted over here. So pause this video and see if you can figure out the domain and range of each of these function…
Animal Life in the Forest Canopy - Meet the Expert | National Geographic
And welcome back to the channel! We are live yet again for our fifth Meet the Expert. Oh boy, what a journey we have been on! We’ve been down deep into the ocean, we’ve met with experts who study bears, we’ve been out in Hungary to see venomous snakes, we…
She Sails the Seas Without Maps or Compasses | Podcast | Overheard at National Geographic
Foreign, I like to think of the voyage and canoes as taking us back in time on the ocean. The Hua Kamalu is a navigator with the Polynesian Voyaging Society. I’ll often ask my crew, like, what do you think it would have been like to show up in Hawaii as t…
Predator-prey population cycles | Ecology and natural systems | High school biology | Khan Academy
What I want to do in this video is think about how different populations that share the same ecosystem can interact with each other and actually provide a feedback loop on each other. There are many cases of this, but the most cited general example is the…
Where Is This Video?
Hey, Vsauce. Michael here. Steve Seitz and Chuck Dyer used view morphing to digitally reveal a side of the Mona Lisa we’ve never seen before. What it would look like if she stared directly at us. That’s her, but it seems a bit unfamiliar. I mean, there is…
Assassination politics: Not inevitable
In my previous video, I described Jim Bell’s idea of assassination politics and said that I agreed with him that the emergence of such a system seemed inevitable. Thanks to the user, peace requires anarchy. I’ve since read an article by Bob Murphy, which …