yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
This Teen Boxer Wants A Chance to Compete Wearing Her Hijab | National Geographic
There’s a prayer that we do that says, “If this is good for me, give it to me, and if it’s not good for me, then keep it away from me.” Every time I make that prayer, I’m like, “But what if God takes it from me?” My name is Amaya Zafar. I’m 16 years old …
Work at a Startup Expo 2019
So thank you so much. Quick round of applause for making it out here for all these companies that we’re going to be having a walk across here. It’s two o’clock, we want to keep it on time because we have a lot of great stuff to get through. So this is wh…
The Hessian matrix | Multivariable calculus | Khan Academy
Hey guys, so before talking about the vector form for the quadratic approximation of multivariable functions, I’ve got to introduce this thing called the Hessen Matrix. The Hessen Matrix, and essentially what this is, it’s just a way to package all the in…
Why You Need To Find Significance
Hey there, Alexa, and welcome back to Honest Talks, a series where we talk about things that we find intriguing and you might as well. In this video, we’re going to talk about probably one of the most important problems that you as an individual have to s…
I’m an IDIOT for getting a credit card...
What’s up you guys, it’s great I’m here. So let’s just say this: I did not expect to get so many views on the unboxing of the JP Morgan Reserve card. So if you’re brand new here, welcome! My name is Graham. I flex credit cards, duplexes, and lotuses. So h…
Vertical asymptote of natural log | Limits | Differential Calculus | Khan Academy
Right over here, we’ve defined y as a function of x, where y is equal to the natural log of x - 3. What I encourage you to do right now is to pause this video and think about for what x values this function is actually defined. Or another way of thinking …