yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
Decomposing angles | Math | 4th grade | Khan Academy
What is the measure of angle EAC? So, we have this symbol here which means angle and then these three letters: E, A, C. Now, to measure angle EAC, we need to first find angle EAC down here on our picture. The way we can do that is use these three letter…
Finding inverse functions: rational | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told that g of x is equal to two x minus one over x plus three. Based on this, pause the video and see if you can figure out what the inverse of g is. g inverse of x. What is that going to be equal to? Alright, I’m assuming you’ve had…
Navy SEAL Astronauts - Smarter Every Day 243
Hey, it’s me, Destin. Welcome back to Smarter Every Day! Today on Smarter Every Day, we are going to learn about the top, like, top, top, top people that exist. Um, you’ve heard of astronauts and how big of a deal it is to become an astronaut. You’ve hear…
Meet a Beautiful Beetle That Loves to Eat Poop | National Geographic
I turned a bison patty around and suddenly I’ve seen this sparkling emerald under the bison patty, and I didn’t expect it. If you find a horny beetle, it’s always a male. The rainbow scarabs are amongst the most beautiful of beetles; they are not the larg…
Reduction of Air Pollutants| Atmospheric Pollution| AP Environmental Science| Khan Academy
Hey there friends, today we’re going to learn about air pollution, and to start off, we’re going back in time to the small town of Donora, Pennsylvania, in October of 1948. Walking into this small industrial town, you can immediately sense that something…
How to get out of a rut? Mental healing series episode 1
It’s literally 4 AM, and I still haven’t studied yet. Why is this happening? Just why? I think I’m gonna sleep for years. I misunderstood the meaning of productivity. Being more productive didn’t mean I was doing the most important work. It only meant I w…