yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
Jeff Bezos 1997 Interview
Rather, who are you? I’m Jeff Bezos. And what was your claim to fame? I am the founder of Amazon.com. Where did you get an idea for Amazon.com? Well, three years ago, I was in New York City working for a quantitative hedge fund when I came across the…
Celebrate 10 years of Khan Academy! 🎂
Hello teachers, Sal here from the not-for-profit Khan Academy, and I just wanted to thank you for all of your partnership over the last 10 years. All of us here at Khan Academy—it’s much more than me now. We’re over 200 folks, including researchers, teac…
Identifying individuals, variables and categorical variables in a data set | Khan Academy
We’re told that millions of Americans rely on caffeine to get them up in the morning, which is true. Although, if I drink caffeine in the morning, I’m very sensitive; I wouldn’t be able to sleep at night. Here’s nutritional data on some popular drinks at…
Rewriting square root of fraction
So we have here the square root, the principal root of one two hundredths. What I want to do is simplify this. When I say simplify, I really mean I want to, if there’s any perfect squares here that I can factor out to take it out from under the radical. I…
Katy Perry - Hot N Cold (Official Music Video)
(church bell ringing) Katy, do you take Alexander to be your lawfully wedded husband? I do. Alexander, do you take Katy to be your lawfully wedded wife? (upbeat pop music) ♪ You change your mind ♪ ♪ Like a girl changes clothes ♪ ♪ Yeah, you PMS like a…
Homeroom with Sal & Dan Tieu & Sophie Turnbull - Wednesday, August 19
Hi everyone, Sal here from Khan Academy. Welcome, uh, again for joining our homeroom live stream. Uh, before we get into what’s going to be a really fun conversation with some internal Khan Academy team members to talk about all the new things we have for…