yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
Quadratic approximation formula, part 1
So our setup is that we have some kind of two variable function f(x, y) who has a scalar output, and the goal is to approximate it near a specific input point. This is something I’ve already talked about in the context of a local linearization. I’ve writt…
Shower Thoughts That Make Me Question Everything
I promise it hasn’t been eight months since I last had a shower. This year has just flown by so quickly that I didn’t get time to gather my thoughts. My shower thoughts: dreams are confusing. Some people believe that they can tell the future; others feel …
The Market Is About To Drop - Again
What’s up, grandma’s guys? Here, so throughout the last few days, there’s been a new topic that’s begun to make its way around the internet, and we got to break this down because it’s from the renowned investor Ray Dalio, with some rather serious claims t…
A Nat Geo Earth Day Adventure | Branching Out | Trailer
April is Earth Month, a time to celebrate our commitment to the natural world. Our behavior impacts so many species on this planet, and it’s even threatening the habitats that we humans call home. Believe me, I’ve seen it. This island and this beach went …
Stuffed GIRL'S HEAD? -- Mind Blow #14
A water-powered jetpack and step right up! Get just stuff, girl! Heads Vsauce! Kevin here. This is my flow. This super Jen and Tory blew everyone away in 2000, made by combining an Atari 2600, Genesis, NES, and Super NES into one sexy package. But let’s …
How to Create a Soundtrack for National Geographic with ‘Queens’ composer Morgan Kibby | QUEENS
National Geographics Queens celebrates powerful female leaders in the natural world, and behind every inspirational animal on screen is an equally gritty and determined woman. All the women on this Queen’s Journey are true leaders—fierce, smart, resilient…