yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
BioShock Infinite Trailer HD [WITH REACTION]
Hey everybody, Jeff from Waikiki Gamer. The new BioShock Infinite trailer came out; commentaries afterwards. [Music] Play. [Music] What’s BioShock Infinite? It’s this game that’s set in the Bioshock unit… no, it’s not. Yes, it is. All right, I’m really, …
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
Charlie Munger: 100 Years of Wisdom Summed up in 20 Minutes
And I’ve catalogued the inanities on structures in my head, and it’s been a wonderful thing to do. If you stop to think about it, how many unhappy collectors do you know? Whether they collect silver, or mistresses, or you know… I thought I would speak ton…
9 WAYS TO DESTROY YOUR ENEMY WITHOUT FIGHTING | STOICISM INSIGHTS
If you’ve ever felt like someone was against everything you said or did solely to attack you, there’s a story about fireflies being pursued. The firefly flew for a long time, attempting to escape, until he reached a dead end, nearly being caught. He asked…
Dua Lipa Monologue - SNL
Ladies and gentlemen, Dua Lipa! [ Cheers and applause ] Thank you, thank you, thank you, thank you, thank you very much. My name is Dua Lipa. Or as some people call me, Dula Peep. But Dua Lipa is my real name. Dua is Albanian for love, and Lipa is Alb…
Limits of combined functions | Limits and continuity | AP Calculus AB | Khan Academy
So let’s find the limit of f of x times h of x as x approaches 0. All right, we have graphical depictions of the graphs y equals f of x and y equals h of x. We know from our limit properties that this is going to be the same thing as the limit as x appro…