yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
3 books that changed my life
We all know that reading is vital for our growth, for our development, but we don’t really have that much time in order to read every single book that we see. And actually, you don’t really need to read that much in order to change your mindset or your be…
What happened with Sillicon Valley Bank and what it means for the economy
I was asked to share my thoughts about the Silicon Valley Bank situation. I want to convey that, um, it’s very, uh, indicative of what the whole economy is like. So, there’s its particular situation and the FED coming in and guaranteeing all depositors, …
15 Steps To Force Your Way Out Of Poverty
Poor people work just as hard, if not harder, than those born into wealth. However, that hard work rarely translates into wealth because poverty, as a system, is designed for survival, not growth. You have just enough to get by until tomorrow but never en…
Westward expansion: social and cultural development | AP US History | Khan Academy
[Instructor] In other videos, we’ve discussed the causes and effects of westward expansion in the 19th century, focusing on the period that began with the discovery of gold in California in 1849 and ending shortly after the Civil War. But westward expan…
Warren Buffett's Advice for Investors for 2024
I don’t know if you guys have noticed, but Warren Buffett has kept very quiet over the past six months. No media interviews, very few changes to his portfolio. The guy has been keeping well out of the spotlight. So much so that when his longtime business …
How To Win A Business Pitch | Startup World Cup 2022
Foreign [Music] [Applause] [Music] Thank you so much for coming to start a World Cup. Well, everybody here, I think, well, most people have seen you on Shark Tank, and they know you’re into investments. But I want to start with how did you become an inves…