yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
Inches and feet
In this video, I’m going to introduce you to two units of measuring length. The first is the inch, which you might have heard about. You’re probably thinking, “How long is an inch?” Well, if you’re familiar with a quarter, a quarter looks something like t…
The Role of Role Models | StarTalk
[Music] It’s often said that it’s easier to be something if you can see it; if you can imagine yourself in that position. Role models have always played an important role in that. Role models have that role. I have a slightly contrarian view of role mode…
Flu Virus 101 | National Geographic
[Narrator] The flu is a highly contagious respiratory illness. It turns up year after year with devastating consequences, all caused by a most elusive virus. The influenza, or flu virus, is a recurring nightmare. It causes more than 36,000 deaths in the…
Trigonometry review
I want to do a quick overview of trigonometry and the aspects of trig functions that are important to us as electrical engineers. So this isn’t meant to be a full class on trigonometry. If you haven’t had this subject before, this is something that you ca…
How I Built a New $1m Business in 12 Months
All right, so this year we launched a new product that’s generated $869,000 in sales over the last 7 months, and is on track to do over a million dollars by the 12-month mark. Now, these numbers are pretty insane, at least for me. Back when I had a day jo…
Sadie's Summer Camp - Bonus Scene | Gender Revolution
NARRATOR: I met so many families, moms and dads, brothers and sisters, all adjusting to a new normal when a child tells them, “I’m not a boy or I’m not a girl.” But as the saying goes, it takes a village. So I wondered, how are the institutions who help r…