yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of sine and cosine product


3m read
·Nov 11, 2024

We're in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it'll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we're going to do a few videos from now.

We've already started going down this path. We've established that the definite integral from 0 to 2 pi of s of Mt DT is equal to zero and that the cosine, the definite integral of cosine Mt DT is equal to zero for any nonzero integer and M.

Actually, we can generalize that a little bit for sine of Mt; it could be for any M actually. And if you don't believe me, I encourage you to... So let me write this for any integer M. This top integral is going to be zero, and this second integral for any nonzero integer M...

You could see if you had zero in this second case, it would be cosine of 0 t, so this would just evaluate to one. So you'd just be integrating the value one from 0 to 2 pi, and so that's going to have a nonzero value.

So with those two out of the way, let's go a little bit deeper, get a little bit more foundations. So I'm now I now want to establish that the definite integral from 0 to 2 pi of s of Mt times cosine of NT DT, that this equals zero for any integers M and N. They could even be the same M; they don't have to necessarily be different, but they could be different.

How do we do this? Well, let's just rewrite this part right over here, leveraging some trig identities. And if it's completely unfamiliar to you, I encourage you to review your trig identities on Khan Academy.

So this is the same thing as a definite integral from 0 to 2 pi of s of Mt multiplied by cosine NT. We can rewrite it using the product-to-sum formulas. So let me use a different color here.

So this thing right over here that I've underlined in magenta, or I'm squaring off in magenta, that can be rewritten as 1/2 times s of m + n t sine of m + n t plus s of m minus n t. And then let me just close that with a DT.

Now, if we were to just rewrite this using some of our integral properties, we could rewrite it as... So this part over here... We could, and let's assume we distribute the 1/2, so we're going to distribute the 1/2 and use some of our integral properties.

And so what are we going to get? So this part roughly right over here we could rewrite as 2 times the definite integral from 0 to 2 pi of sine of m + n t DT. And then this part, once you distribute the 1/2 and you use some integral properties, this could be plus 1/2 times the definite integral from 0 to 2 pi of s of m minus n t DT.

Now, what are each of these things going to be equal to? Well, isn't this right over here? Isn't that just some integer? If I take the sum of two arbitrary integers, that's going to be some integer, so that's going to be some integer, and this two is going to be some integer right over here.

And we've already established that the definite integral of s of some integer times T DT is zero. So by this first thing that we already showed, this is going to be equal to zero. That's going to be equal to zero; it doesn't matter that you're multiplying by 1/2.

1/2 times 0 is 0, and 1/2 times 0 is 0; this whole thing is going to evaluate to zero. So there you go, we've proven that as well.

More Articles

View All
What is the BEST Stock Market Investing Strategy?
Well guys, it’s day four of the new money advent calendar and I’m already struggling. I’m recording this at 9:30 at night. I am in my pajamas; I’m like the classic news anchor right now. You know, got my good shirt on up top and then just wearing my pajam…
The Bull Market Of 2020 | Did We Miss The Stock Market Bottom?
What’s up guys, it’s Graham here. So, the other morning it was really like any other. I woke up around 6 a.m., I went to the kitchen, I got myself some coffee, I sat down in front of my computer, I took a sip of said coffee, and then I literally spit it b…
How to Bring Mastery Learning to Your Class... And Get Results Like Tim's!
Hi everyone! This is Jeremy Schiefling with Khan Academy. I want to thank you for joining us this afternoon or this evening depending on where you’re calling in from, and you are in for a very special treat. So as you probably know, we’ve been doing webi…
THE FED JUST BAILED OUT THE STOCK MARKET AGAIN
What’s up you guys, it’s Graham here. So it finally happened! It’s now official! We’ve been waiting weeks for this announcement to come to light, and until now we’ve just been hypothesizing about what’s going on and how this is going to impact everyone wa…
This Little Sun Bear's World Is a Scary Place | Short Film Showcase
[Music] When the sky roars, I climb to the top. The sensation when thousands of cool drops pelt against my body, the chill sends me into a kind of giddy madness. [Music] The clouds lift. Warm rays permeate the canopy. [Music] Muddy river banks blacke…
Terminal prepositions | The parts of speech | Grammar | Khan Academy
Hello, Garans. Today I want to talk about ending sentences with prepositions, and I want to tell you straight up—it is totally okay. Like, it is perfectly grammatically correct and sensible and fine to end sentences with prepositions in English. And if yo…