yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Einstein's Gravity Waves: How Astronomers Proved Relativity's Key Prediction | Alex Filippenko


3m read
·Nov 3, 2024

One of the most exciting discoveries in all of science in the past year—and one in which there will be a lot of progress in the next five years—is the discovery of gravitational waves: ripples in the actual fabric of space time produced when, for example, two massive stars or black holes merge into one. LIGO, the Laser Interferometer Gravitational-Wave Observatory, in September 2015 detected a signal, which, after months of processing, the scientists became convinced was the signature of two black holes merging together 1.3 billion light years away.

Now this is absolutely magnificent, because it's a key prediction of Einstein's general theory of relativity, his theory of gravity. It predicts that when two massive, especially dense objects merge together, the dimples that each of them individually form in the shape of space sort of form a spiral pattern that goes outward—a little bit like a water wave when you toss a ball onto a swimming pool. And that wave carries energy and it's extremely difficult to detect, but scientists last year detected it and announced that result, and I was just blown away.

Two black holes each having a mass of about 30 times the mass of the sun merging together. It's just fantastic. And a couple of more events of that sort have been detected since then—black holes merging together. As the scientists and engineers perfect this technique even more, they will be able to study merging neutron stars and other kinds of astrophysical objects.

And this will allow us to study them in a way that's simply not possible with light—with electromagnetic radiation—because gravitational waves are not a form of electric and magnetic fields oscillating in space. Instead, they're an actual ripple, a little thingy going out in the shape of space, and with the passage of time showing that Einstein's idea that massive objects really do form a distinct dimple, which then forms a ripple of two of these things merge or if one of them explodes or something like that. This theory really is correct, and it took a century to show that that's true.

Now, the precision of the measurement is just mind-boggling. It's by far the most precise measurement ever made by anyone. They had to measure the distances of a length of, well I don't want to get into the details now, but of their device—Their device had two four-kilometer length arms and they had to measure the length of those arms to a precision of 1/1000th of a proton.

Now a proton is yay big, and I exaggerate a lot. So this four-kilometer length arm changed in length a tiny bit as this gravitational wave was passing through, and they had to measure this change of 1/1000th of a proton. It's as though you were measuring the distance of the nearest star, which is 4.2 light years or 40 million million kilometers (40 trillion kilometers), to the width of a human hair. That's the kind of precision we're talking about.

Imagine measuring the distance of the nearest star to a precision of the width of a human hair. It's just incredible. Even though the discovery of gravitational waves was first made in September of 2015 and announced to the world in February of 2016, it's a very young field. There will be more such detections, and we're just beginning to explore the universe in a way where we're completely blind with electromagnetic waves, with light.

So I anticipate huge discoveries in the next five to ten years in the field of gravitational wave astronomy.

More Articles

View All
Air Pollution 101 | National Geographic
(piano music) - [Women Speaker] Air pollution consists of chemicals or particles in the atmosphere that pose serious health and environmental threats. But what causes air pollution? And what does it mean for our planet? Some air pollution comes from nat…
Warrior Watch: Protecting Kenya's Lions | Explorers in the Field
[Music] [Music] My father was Saawariya and they used to kill many, many, many Lancia. He used to tell me how dangerous Lancer. I used to hate Lance. [Music] When I was a young boy, I thought I would be growing up and killing Lance, but now we protect the…
Mapping the Highest Peak in the World | National Geographic
People know Mount Everest; it’s the tallest mountain in the world. The big questions this expedition is answering is how climate change is happening in the high mountain regions. Maps are a critical tool for being able to measure the changes in the glacia…
Kevin O'Leary REVEALS His MULTI-MILLION Dollar Watch COLLECTION!
Hi there! As always, this week’s episode of Ask Mr. Wonderful comes from questions. It’s a dialogue; it’s a two-way thing. What I’m trying to do is gather a lot of questions into areas where it’s the same question over and over again, so I’m answering as …
This is how one of the first nature documentaries came about.
This is some of the earliest film of Antarctica and the South Atlantic. These groundbreaking images were captured by Frank Hurley, the legendary filmmaker who documented Sir Ernest Shackleton’s doomed Antarctic expedition. When their ship, Endurance, sank…
Graphical limit where function undefined
So we have the graph of ( y = f(x) ) right over here. What we want to do is figure out the limit of ( f(x) ) as ( x ) approaches -4. So, what does that mean? Well, a limit is saying, “What is my function approaching as the input of that function approach…