yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpret proportionality constants


3m read
·Nov 11, 2024

We can calculate the depth ( d ) of snow in centimeters that accumulates in Harper's yard during the first ( h ) hours of a snowstorm using the equation ( d ) is equal to five times ( h ). So, ( d ) is the depth of snow in centimeters and ( h ) is the time that elapses in hours.

How many hours does it take for one centimeter of snow to accumulate in Harper's yard? Pause this video and see if you can figure that out.

All right, so we want to figure out what ( h ) gives us a ( d ) of one centimeter. Remember, ( d ) is measured in centimeters, so we really just need to solve the equation when ( d ) is equal to one. What is ( h ) going to be? To solve for ( h ), we just need to divide both sides by five.

So, you divide both sides by five, the coefficient on the ( h ), and you are left with ( h ) is equal to one-fifth. The unit for ( h ) is hours. One-fifth of an hour! So one-fifth of an hour, if they had minutes to there, then you would say, well, one-fifth of an hour, there are 60 minutes; we'll use 12 minutes. But they just want it as a number of hours.

So one-fifth of an hour, how many centimeters of snow accumulate in per hour? Or this is a little bit of a typo: how many centimeters of snow accumulate in, we could say one hour. In one hour, or they could have said how many centimeters of snow accumulate per hour—that's another way of thinking about it. So we could get rid of "per hour."

So pause the video and see if you can figure that out. Well, there's a couple of ways to think about it. Perhaps the easiest one is to say, well, what is ( d ) when ( h ) is equal to one? And so we could just say ( d ) when ( h ) is equal to one. When only one hour has elapsed, well, it's going to be five times one, which is equal to five. And our units for ( d ) are in centimeters, so 5 centimeters.

Let's do another example. Betty's Bakery calculates the total price ( d ) in dollars for ( c ) cupcakes using the equation ( d ) is equal to ( 2c ). What does 2 mean in this situation? So pause this video and see if you can answer this question.

So remember, ( d ) is in dollars for ( c ) cupcakes. Now one way to think about it is, what happens if we take ( d ) is equal to two times ( c )? What happens if we divide both sides by ( c )? You have ( \frac{d}{c} ) is equal to 2.

And so what would be the units right over here? Well, we have dollars ( d ) over ( c ) cupcakes. So this would be two dollars because that's the units for ( d ) per cupcake—dollars per cupcake. This is the unit rate per cupcake, how much do you have to pay per cupcake?

So which of these choices match up to that? The bakery charges two dollars for each cupcake? Yeah, two dollars per cupcake; that looks right. The bakery sells two cupcakes for a dollar? No, that would be two cupcakes per dollar, not two dollars per cupcake.

The bakery sells two types of cupcakes? No, we're definitely not talking about two types of cupcakes; they're just talking about cupcakes generally. I guess there's only one type of cupcake; we don't know, but just cupcakes generally is two dollars per cupcake.

More Articles

View All
Lecture 17 - How to Design Hardware Products (Hosain Rahman)
Very exciting! And thank you, Sam, uh, for having me. Sam and I have known each other for a long time because we were fellow Sequoia companies, and we met in the early days of when he was on his, uh, company journey. So it’s cool! So what he asked me to t…
Government supervision and regulation of banking institutions | Financial Literacy | Khan Academy
So whenever you’re dealing with banking, there’s a whole series of government agencies and quasi pseudo-government organizations. I’ll talk a little bit about why it’s quasi-government. That influence what’s happening with banks, and it’s useful to know w…
Comparing fractions with the same denominator | Math | 3rd grade | Khan Academy
Let’s compare ( \frac{2}{4} ) and ( \frac{3}{4} ). First, let’s think about what these fractions mean. ( \frac{2}{4} ) means we have some whole and we’ve split it into four equal size pieces, and we get two of those pieces. Maybe we could think about pizz…
Varnas and the Caste System | World History | Khan Academy
In any textbook overview of Hinduism, you will quickly encounter the caste system. The caste system is this notion that people are born into the roles that they have to play in society. Now, the reason why I put this in quotes is because they are associat…
Let's think about Lightning - Smarter Every Day 15
[Music] [Rainfall and thunder] Hey, it’s me, Destin. So I’m gonna explain why thunder sounds the way it does. And uh, we’re in the middle of a thunderstorm here, obviously, so I’m going to try to make this quick. So basically, if you’re standing on the …
Charlie Munger: We're Playing With Fire (Interview)
[Music] Hey guys, welcome back to the channel. We got something really cool to talk about today: Charlie Munger. As you guys know, one of my favorite investors, he recently did a 45-50 minute interview with the California Institute of Technology, which i…