yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring completely with a common factor | Algebra 1 | Khan Academy


3m read
·Nov 10, 2024

So let's see if we can try to factor the following expression completely. So factor this completely. Pause the video and have a go at that.

All right, now let's work through this together. The way that I like to think about it is I first try to see if there is any common factor to all the terms, and I try to find the greatest common factor possible. Common factors to all the terms, so let's see, they're all divisible by 2, so 2 would be a common factor. But let's see, they're also all divisible by 4.

4 is divisible by 4, 8 is divisible by 4, 12 is divisible by 4, and that looks like the greatest common factor. They're not all divisible by x, so I can't throw an x in there. What I want to do is factor out a 4.

So I could rewrite this as four times… now what would it be? Four times what? Well, if I factor a four out of 4x squared, I'm just going to be left with an x squared. If I factor a four out of negative 8x, negative 8x divided by 4 is negative 2, so I'm going to have negative 2x. If I factor a 4 out of negative 12, negative 12 divided by 4 is negative 3.

Now am I done factoring? Well, it looks like I could factor this thing a little bit more. Can I think of two numbers that add up to negative 2 and when I multiply, I get negative 3? Since when I multiply, I get a negative value, one of them is going to be positive and one of them is going to be negative. I could think about it this way: a plus b is equal to negative 2 and a times b needs to be equal to negative 3.

So let's see, a could be equal to negative 3 and b could be equal to 1 because negative 3 plus 1 is negative 2 and negative 3 times 1 is negative 3. So I could rewrite all of this as 4 times (x + negative 3), or I could just write that as (x - 3)(x + 1). And now I have actually factored this completely.

Let's do another example. So let's say that we had the expression negative 3x squared plus 21x minus 30. Pause the video and see if you can factor this completely.

All right, now let's do this together. So what would be the greatest common factor? So let's see, they're all divisible by 3, so you could factor out a 3. But let's see what happens if you factor out a 3. This is the same thing as 3 times… well, negative 3x squared divided by 3 is negative x squared, 21x divided by 3 is 7x, so plus 7x, and then negative 30 divided by 3 is negative 10.

You could do it this way, but having this negative out on the x squared term still makes it a little bit confusing on how you would factor this further. You can do it, but it still takes a little bit more of a mental load. So instead of just factoring out a 3, let's factor out a negative 3.

So we could write it this way: if we factor out a negative 3, what does that become? Well then, if you factor out a negative 3 out of this term, you're just left with an x squared. If you factor out a negative 3 from this term, 21 divided by negative 3 is negative 7x, and if you factor out a negative 3 out of negative 30, you're left with a positive 10.

And now let's see if we can factor this thing a little bit more. Can I think of two numbers where if I were to add them, I get to negative 7, and if I were to multiply them, I get 10? And let's see, they'd have to have the same sign because their product is positive.

So, see, a could be equal to negative 5 and then b is equal to negative 2. So I can rewrite this whole thing as equal to negative 3 times (x + negative 5), which is the same thing as (x - 5)(x + negative 2), which is the same thing as (x - 2). And now we have factored completely.

More Articles

View All
Aliens under the Ice – Life on Rogue Planets
Rogue planets are planets that travel through the universe alone. They inhabit the dark and vast space between the stars. Drifting alone through eternal darkness, no light warms their surfaces, and they’re exposed to the freezing cold of outer space. They…
Life is a Game: This is how you win it
Most people you know are not aware that life is a game meant to be won. That’s why you see them feeling stuck, tired, and bored. Well, by the end of this video, not only will you understand the purpose of the game, but the rules and how to win it too. Li…
Jim Crow part 3 | The Gilded Age (1865-1898) | US History | Khan Academy
In the last video, we were talking about the era of Reconstruction and how after the Civil War, when the 13th Amendment to the Constitution outlawed slavery, many Southern states enacted laws known as Black Codes. These codes, in many cases, were really j…
Newton's first law | Physics | Khan Academy
You’re standing in a bus at rest, without any support. Suddenly, the bus starts moving, and you fall back, as if someone pushed you back. Why does this happen? You get back on your feet, and now suddenly the bus stops, and you fall forward, as if someone …
Best PHOTOBOMBS: IMG! episode 12
The Cheez Whiz bird of Oz and a brand new Wii controller. It’s episode 12 of IMG Woody and Buzz Lightyear all grown up and Dora the Explorer all grown up, or as Jessica Alba here is Star Wars as a classic PC adventure game. My favorite is the 12 pixel sla…
Daily Conversation to Learn English for Beginners | Practice English Speaking and Listening
Excuse me, do you have a bigger frying pan? Salesperson: Of course. We have many sizes. How big do you need? Customer: Well, my current one is too small. I need something larger. Maybe around 30cm. Salesperson: I see. We have this one here—it’s 32 cm. Per…