yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring completely with a common factor | Algebra 1 | Khan Academy


3m read
·Nov 10, 2024

So let's see if we can try to factor the following expression completely. So factor this completely. Pause the video and have a go at that.

All right, now let's work through this together. The way that I like to think about it is I first try to see if there is any common factor to all the terms, and I try to find the greatest common factor possible. Common factors to all the terms, so let's see, they're all divisible by 2, so 2 would be a common factor. But let's see, they're also all divisible by 4.

4 is divisible by 4, 8 is divisible by 4, 12 is divisible by 4, and that looks like the greatest common factor. They're not all divisible by x, so I can't throw an x in there. What I want to do is factor out a 4.

So I could rewrite this as four times… now what would it be? Four times what? Well, if I factor a four out of 4x squared, I'm just going to be left with an x squared. If I factor a four out of negative 8x, negative 8x divided by 4 is negative 2, so I'm going to have negative 2x. If I factor a 4 out of negative 12, negative 12 divided by 4 is negative 3.

Now am I done factoring? Well, it looks like I could factor this thing a little bit more. Can I think of two numbers that add up to negative 2 and when I multiply, I get negative 3? Since when I multiply, I get a negative value, one of them is going to be positive and one of them is going to be negative. I could think about it this way: a plus b is equal to negative 2 and a times b needs to be equal to negative 3.

So let's see, a could be equal to negative 3 and b could be equal to 1 because negative 3 plus 1 is negative 2 and negative 3 times 1 is negative 3. So I could rewrite all of this as 4 times (x + negative 3), or I could just write that as (x - 3)(x + 1). And now I have actually factored this completely.

Let's do another example. So let's say that we had the expression negative 3x squared plus 21x minus 30. Pause the video and see if you can factor this completely.

All right, now let's do this together. So what would be the greatest common factor? So let's see, they're all divisible by 3, so you could factor out a 3. But let's see what happens if you factor out a 3. This is the same thing as 3 times… well, negative 3x squared divided by 3 is negative x squared, 21x divided by 3 is 7x, so plus 7x, and then negative 30 divided by 3 is negative 10.

You could do it this way, but having this negative out on the x squared term still makes it a little bit confusing on how you would factor this further. You can do it, but it still takes a little bit more of a mental load. So instead of just factoring out a 3, let's factor out a negative 3.

So we could write it this way: if we factor out a negative 3, what does that become? Well then, if you factor out a negative 3 out of this term, you're just left with an x squared. If you factor out a negative 3 from this term, 21 divided by negative 3 is negative 7x, and if you factor out a negative 3 out of negative 30, you're left with a positive 10.

And now let's see if we can factor this thing a little bit more. Can I think of two numbers where if I were to add them, I get to negative 7, and if I were to multiply them, I get 10? And let's see, they'd have to have the same sign because their product is positive.

So, see, a could be equal to negative 5 and then b is equal to negative 2. So I can rewrite this whole thing as equal to negative 3 times (x + negative 5), which is the same thing as (x - 5)(x + negative 2), which is the same thing as (x - 2). And now we have factored completely.

More Articles

View All
The Apple Vision Pro Was Always Doomed to Fail
Imagine you just spent $4,000 on an Apple Vision Pro. You excitedly bring it home and set it down on your coffee table. As you open the premium-feeling Apple packaging, the smell of the fresh plastic and metal fills you with a familiar joy. You strap on …
For Martha Raddatz, This is a Deeply Unique Story to Tell | The Long Road Home
I have, you know, been in the back seat of an F-15 on a combat mission. I’ve been in the streets of Baghdad. I’ve been a moderator at presidential debates. There is nothing that has been more meaningful in my career than this. When I first met all these …
What will it take to save the savanna elephant? | Podcast | Overheard at National Geographic
Foreign. The way that these elephants use this landscape is something that has been learned and passed on from generation to generation. This is Paula Kahumbu, National Geographic Explorer and elephant expert, on our new documentary series, Secrets of the…
How to be Stoic in a Crisis
When a crisis is upon us, how can we deal with it in a Stoic way? When we look at Stoic literature, we’ll find some good advice that we can apply during times of hardship. Crises come in many different forms. We can have personal crises on a micro level, …
The Middle Class Just Got FINANCIALLY RUINED
What’s up, Graham? It’s guys here. So how should I say this gently? Uh, we’re screwed. It was just reported that household debt reached an all-time high of 16 trillion dollars. Credit card debt is on the rise. One in three Americans making 250,000 is livi…
We're in DEFLATION for the first time in 22 years.
Well everybody, we are in deflation. This is the first time that Australia has been in deflation in literally 23 years. So check this out, this article reads consumer prices in Australia dropped by 0.3 percent year on year in Q2 2020. This was the first d…