yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring completely with a common factor | Algebra 1 | Khan Academy


3m read
·Nov 10, 2024

So let's see if we can try to factor the following expression completely. So factor this completely. Pause the video and have a go at that.

All right, now let's work through this together. The way that I like to think about it is I first try to see if there is any common factor to all the terms, and I try to find the greatest common factor possible. Common factors to all the terms, so let's see, they're all divisible by 2, so 2 would be a common factor. But let's see, they're also all divisible by 4.

4 is divisible by 4, 8 is divisible by 4, 12 is divisible by 4, and that looks like the greatest common factor. They're not all divisible by x, so I can't throw an x in there. What I want to do is factor out a 4.

So I could rewrite this as four times… now what would it be? Four times what? Well, if I factor a four out of 4x squared, I'm just going to be left with an x squared. If I factor a four out of negative 8x, negative 8x divided by 4 is negative 2, so I'm going to have negative 2x. If I factor a 4 out of negative 12, negative 12 divided by 4 is negative 3.

Now am I done factoring? Well, it looks like I could factor this thing a little bit more. Can I think of two numbers that add up to negative 2 and when I multiply, I get negative 3? Since when I multiply, I get a negative value, one of them is going to be positive and one of them is going to be negative. I could think about it this way: a plus b is equal to negative 2 and a times b needs to be equal to negative 3.

So let's see, a could be equal to negative 3 and b could be equal to 1 because negative 3 plus 1 is negative 2 and negative 3 times 1 is negative 3. So I could rewrite all of this as 4 times (x + negative 3), or I could just write that as (x - 3)(x + 1). And now I have actually factored this completely.

Let's do another example. So let's say that we had the expression negative 3x squared plus 21x minus 30. Pause the video and see if you can factor this completely.

All right, now let's do this together. So what would be the greatest common factor? So let's see, they're all divisible by 3, so you could factor out a 3. But let's see what happens if you factor out a 3. This is the same thing as 3 times… well, negative 3x squared divided by 3 is negative x squared, 21x divided by 3 is 7x, so plus 7x, and then negative 30 divided by 3 is negative 10.

You could do it this way, but having this negative out on the x squared term still makes it a little bit confusing on how you would factor this further. You can do it, but it still takes a little bit more of a mental load. So instead of just factoring out a 3, let's factor out a negative 3.

So we could write it this way: if we factor out a negative 3, what does that become? Well then, if you factor out a negative 3 out of this term, you're just left with an x squared. If you factor out a negative 3 from this term, 21 divided by negative 3 is negative 7x, and if you factor out a negative 3 out of negative 30, you're left with a positive 10.

And now let's see if we can factor this thing a little bit more. Can I think of two numbers where if I were to add them, I get to negative 7, and if I were to multiply them, I get 10? And let's see, they'd have to have the same sign because their product is positive.

So, see, a could be equal to negative 5 and then b is equal to negative 2. So I can rewrite this whole thing as equal to negative 3 times (x + negative 5), which is the same thing as (x - 5)(x + negative 2), which is the same thing as (x - 2). And now we have factored completely.

More Articles

View All
Pilots can influence the sale of a plane.
So the pilots can influence the decisions on the plank 50% of the time. Really? Yeah, why is that? Course they ask the pilots what they think of the manufacturer, the reliability, the capabilities. 50% of the time they have a big contribution. This is a …
How Elephant Families Communicate and Bond | Secrets of the Elephants
For the last 48 years, Dr. Joyce Poole has been eavesdropping on elephant families, learning their language. “I speak to elephants. I rumbled to them if they seem upset. I say hello and things. Their vocabulary is very large. Elephants have over 30 vocal…
Light Painting (while pregnant) - Smarter Every Day 41
Hey, it’s me Destin. Welcome to Smarter Every Day. So, most women get pregnancy photos and then a couple of months later look at them and say, “What the heck was I thinking?” But I’ve decided to bring my wife here to a spooky abandoned warehouse. Yeah, it…
Peter Lynch: How to Invest Better Than Wall Street (Rare Interview)
People don’t understand their natural advantages, and they don’t use them. So that’s bad, number one. But worse, number two, is if you don’t think you’re a good ice skater or if you’re convinced you’re not a good cellist, you’re not going to try it. But p…
Types of forces and free body diagrams | AP Physics 1 | Khan Academy
In this video, we’re going to discuss different types of forces, but we’re going to do it in the context of free body diagrams. So let’s say that I have a table here, and I have a block that is sitting stationary on that table. What are all of the forces …
The Upcoming Housing Market Crash
One topic that has been getting quite a bit of attention recently is the state of the US housing market. A quick Google search, and you will find plenty of articles and commentary about how the housing market is overheated and we are in the midst of anoth…