yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring completely with a common factor | Algebra 1 | Khan Academy


3m read
·Nov 10, 2024

So let's see if we can try to factor the following expression completely. So factor this completely. Pause the video and have a go at that.

All right, now let's work through this together. The way that I like to think about it is I first try to see if there is any common factor to all the terms, and I try to find the greatest common factor possible. Common factors to all the terms, so let's see, they're all divisible by 2, so 2 would be a common factor. But let's see, they're also all divisible by 4.

4 is divisible by 4, 8 is divisible by 4, 12 is divisible by 4, and that looks like the greatest common factor. They're not all divisible by x, so I can't throw an x in there. What I want to do is factor out a 4.

So I could rewrite this as four times… now what would it be? Four times what? Well, if I factor a four out of 4x squared, I'm just going to be left with an x squared. If I factor a four out of negative 8x, negative 8x divided by 4 is negative 2, so I'm going to have negative 2x. If I factor a 4 out of negative 12, negative 12 divided by 4 is negative 3.

Now am I done factoring? Well, it looks like I could factor this thing a little bit more. Can I think of two numbers that add up to negative 2 and when I multiply, I get negative 3? Since when I multiply, I get a negative value, one of them is going to be positive and one of them is going to be negative. I could think about it this way: a plus b is equal to negative 2 and a times b needs to be equal to negative 3.

So let's see, a could be equal to negative 3 and b could be equal to 1 because negative 3 plus 1 is negative 2 and negative 3 times 1 is negative 3. So I could rewrite all of this as 4 times (x + negative 3), or I could just write that as (x - 3)(x + 1). And now I have actually factored this completely.

Let's do another example. So let's say that we had the expression negative 3x squared plus 21x minus 30. Pause the video and see if you can factor this completely.

All right, now let's do this together. So what would be the greatest common factor? So let's see, they're all divisible by 3, so you could factor out a 3. But let's see what happens if you factor out a 3. This is the same thing as 3 times… well, negative 3x squared divided by 3 is negative x squared, 21x divided by 3 is 7x, so plus 7x, and then negative 30 divided by 3 is negative 10.

You could do it this way, but having this negative out on the x squared term still makes it a little bit confusing on how you would factor this further. You can do it, but it still takes a little bit more of a mental load. So instead of just factoring out a 3, let's factor out a negative 3.

So we could write it this way: if we factor out a negative 3, what does that become? Well then, if you factor out a negative 3 out of this term, you're just left with an x squared. If you factor out a negative 3 from this term, 21 divided by negative 3 is negative 7x, and if you factor out a negative 3 out of negative 30, you're left with a positive 10.

And now let's see if we can factor this thing a little bit more. Can I think of two numbers where if I were to add them, I get to negative 7, and if I were to multiply them, I get 10? And let's see, they'd have to have the same sign because their product is positive.

So, see, a could be equal to negative 5 and then b is equal to negative 2. So I can rewrite this whole thing as equal to negative 3 times (x + negative 5), which is the same thing as (x - 5)(x + negative 2), which is the same thing as (x - 2). And now we have factored completely.

More Articles

View All
Addition of water (acid-catalyzed) mechanism | Organic chemistry | Khan Academy
Anytime you’re trying to come up with a mechanism for a reaction, it’s worthwhile to study a little bit of what you are starting with and then think about what you finish with and think about what is different. So, what we’re starting with, we could call…
STOCK MARKET REACHES ANOTHER ALL TIME HIGH | DO THIS NOW
What’s up you guys? It’s Graham here. So, today has been a very eventful day. So eventful, in fact, that I had to replace the normal video I had scheduled today with this one because wow, today has been one of the best performing days for the stock market…
Analyzing graphs of exponential functions | High School Math | Khan Academy
So we have the graph of an exponential function here, and the function is m of x. What I want to do is figure out what m of 6 is going to be equal to. And like always, pause the video and see if you can work it out. Well, as I mentioned, this is an expon…
The Placebo Effect: Mind Over Matter
The mind can hold tremendous power over our bodies. People walking over burning coal with no sign of pain, seemingly average people achieving feats of superhuman strength, or even just the everyday person overcoming tremendous adversity. We’ve all heard t…
The Challenges with Cancer Trials | Breakthrough
ANDRE CHOULIKA: We didn’t have any intention of injecting these type of vials to patient because we needed a lot of vials to be able to file our clinical trial application. And this was planned to be done with the University College London. NARRATOR: Bef…
Don’t Be “Distracted by Their Darkness” | Marcus Aurelius on Success
Even though the Stoic teachings are geared towards tranquility, the end goal is living virtuously and in accordance with nature. So, there’s something as being ‘successful’ as a Stoic, which is living a life of virtue. But no matter what we pursue, the wo…