yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

3d curl computation example


4m read
·Nov 11, 2024

So let's go ahead and work through an actual curl computation.

Let's say our vector-valued function V, which is a function of x, y, and z, this is going to be three-dimensional, is defined by the functions, uh, and I don't know, let's say the first component is x * y, the second one is cosine of z, and then the last component is z^2 + y.

So, if you take this guy, how do you compute the curl of that vector-valued function?

So what you do, as I mentioned in the last video, is you imagine taking this Del operator and taking the cross product between that and your vector-valued function.

What that means, when you expand it, is that the Del operator you just kind of fill it with partial differential operators, you could say. But really, it's just the symbol ∂/∂x, ∂/∂y, ∂/∂z.

Uh, and these are things that are just waiting to take in some kind of function. So, we're going to take the cross product between that and the function that we have defined here.

So let me just actually copy it over here a little residue, and to compute this cross product, we take a certain determinant.

So I'm going to write over here, determinant. It's going to be of a 3x3 matrix, but really it's kind of like a "quote unquote matrix" because each component has something funky.

So, the top row, just like we would have with any other cross product that we're computing, is going to have i, j, and k, these unit vectors in three-dimensional space.

And the second row here is going to have all of these partial differential operators since that's the first vector in our cross product. So that's ∂/∂x, ∂/∂y, and again all of these are just kind of waiting to be given a function that they can take the derivative of.

And then that third row is going to be the functions that we have. So the first component here is xy, the second component is cosine of z, and then that final component is z^2 + y.

Um, so I'll give some room here, maybe make it more visible.

So this is the determinant we need to compute, and this is going to be broken up into three different parts.

Uh, the first one we take this top part i and multiply it by the determinant of this submatrix.

So when we do that, um, this subdeterminant, we're taking the partial derivative with respect to y of z^2 + y.

Now, as far as y is concerned, z looks like a constant, so z^2 is a constant, and the partial derivative of this entire guy is just 1.

So that'll look like 1, and then we're subtracting off the partial derivative with respect to z of cosine of z, and that just looks the same as, you know, a derivative of cosine z, which is negative sin(z).

So that's -sin(z).

So that's the first part. And then as the next part, we're going to take j, but we're subtracting because you're always kind of thinking plus minus plus when you're doing these determinants.

So, we're going to subtract off j multiplied by its own little subdeterminant, and this time the subdeterminant is going to involve the two columns that it's not part of.

So you're imagining this first column and this second column as being part of a matrix.

So the first thing you do is take this partial derivative with respect to x of z^2 + y. Well, no x shows up there, right? That's z^2, and y.

Um, each looks like constants as far as x is concerned, so that's 0.

Then we take the partial with respect to z of x * y, and again, there's no z that shows up there, so that's also 0.

So we're kind of subtracting off 0.

And then finally, we're adding this last component.

So, we're going to add that last component k multiplied by the determinant of this submatrix of the columns that it's not part of.

So this involves the partial derivative with respect to x of cosine z. Well, no x shows up there, so that's just 0.

So that's just a 0.

And then we're subtracting off the partial with respect to y of x * y. Well, x looks like a constant, y looks like the variable, so that partial derivative is just x.

So we're subtracting off x, which means if we simplify this.

So the curl of our vector field, the curl of our vector field as a whole, as this function of x, y, and z is equal to, and that first component, the i component, we've got 1 - (-sin(z)).

So - (-sin(z)) that's 1 + sin(z).

And then the j component, we're subtracting off, but it's 0.

Usually, if you were subtracting off, you'd have to make sure to remember to flip those, but both of those are 0, so the entire j component here, or the y component of the output is 0.

And then finally, we're adding, uh, the k component is 0 - x, so that entire thing is just -x.

And that's the curl of the function, and in general, that's how you do it.

You would, um, you would take a look at the way that your function is defined in each component there and imagine taking the cross product between this Del symbol, this ∂/∂x, ∂/∂y, ∂/∂z, and you take the cross product between that and your function.

And, uh, it involves taking six different partial derivatives, and you're just mainly, it's a matter of bookkeeping to make sure you do it right, and you'll end up with something like this.

More Articles

View All
Nietzsche - You Are Your Own Worst Enemy
In Thus Spoke Zarathustra, Friedrich Nietzsche said, “You yourself will always be the worst enemy you can encounter; you yourself lie in wait for yourself in caves and forests.” In my opinion, Nietzsche shared an important insight with us: we really are o…
What is a sentence? | Syntax | Khan Academy
Hello Garans, hello Paige, hi David. So today we’re going to tackle this idea of what is a sentence as we go into this realm of language that is called syntax. Syntax is this concept of basically grammatical order. This word “syntaxis” literally means in…
Origins of life | Biology | Khan Academy
We have many videos on Khan Academy on things like evolution and natural selection. We think we have a fairly solid understanding of how life can evolve to give us the variety, the diversity that we’ve seen, and the complexity that we’ve seen around us. B…
The Stoic Guide To Overcoming The Desire To Escape Everything | STOICISM INSIGHTS
Isn’t it a bit strange that in this vast world we often stick to the same small corners where we were born? Here we are, on this huge spinning globe, and many of us never venture far from where our journey began. Think about it: how often do we find ourse…
Buffer capacity | Buffers, titrations, and solubility equilibria | Chemistry | Khan Academy
Let’s talk about buffer capacity. Buffer capacity is a property of a buffer, and it tells you how much acid or base you can add before the pH starts changing. Basically, as your buffer capacity goes up (which I’m going to abbreviate as BC), you can add m…
Where is Scandinavia?
Scan-duh-nay-vee-ah! Look at this Arctic wonderland – fjords, saunas, fjords, lutefisk, blondes, vikings, blond vikings?, fjords, Ikea, babies in government issued boxes, Santa, death metal, and fjords. But like, where exactly are the borders of Scandina…