yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Energy dissipation across two resistors in series example


4m read
·Nov 11, 2024

A student builds a circuit with a battery and two resistors in series. The resistance of R2 is double the resistance of R1. Below is the graph of the energy lost at R1 over time. So, that's this graph. Which of the following shows the energy lost at R2 over time in terms of E1? We have these four choices here, so pause this video and see if you can figure it out on your own.

All right, now let's do this together. So first, let's visualize the circuit. You have your voltage source; it's our battery here, so it's a positive terminal, negative terminal, and then this could be our first resistor. Then, that's our second resistor. They tell us that these two resistors are in series, and we complete the circuit here. This is going to be R1; this is R2.

If you just have one circuit like this, where you don't have any parts of it that are in parallel, your current throughout this circuit is going to be constant. So, we could say at any point here, our current, let's just call that I. Now they tell us how these resistances relate to each other. If R1 has a resistance of, let's call it X ohms, they tell us that the resistance of R2 is double the resistance of R1. So, this is X ohms; this is going to be 2X ohms.

Now, to think about what would be if this is the energy dissipated across R1 over time, to think about the energy dissipated across R2 over time, let's think about power and energy and what we know about them. So we know that power is equal to energy dissipated over time. We could write, for example, power is equal to energy dissipated over time, which can be expressed as your change in voltage across a resistor times the current going through that resistor.

If you want an expression for energy dissipated over time, you can look at this part right over there. We can just multiply both sides by delta t. So we could write that energy dissipated over time is going to be equal to our change in voltage across the resistor times the current going through the resistor times our change in time.

Now, if we are starting at time equals zero, our change in time is just going to be whatever time we are at minus zero. So, it's going to be whatever time we're at. So I'm just going to write times T right over here. Now your change in voltage across a resistor – we have learned before – your change in voltage across a resistor is just going to be the current going through that resistor times the resistance.

So we could take this and substitute it back for delta V. And what do we get? We get energy dissipated is going to be equal to our current going through a resistor times the resistance times the current going through the resistor times time. Or we could write that energy dissipated as a function of, well, as a function of all three of these things, is going to be the current squared times the resistance times time.

Now, we already know from this that, at time T1, we have an energy dissipated of E1. And that's with the resistance of X ohms. So we can say we have energy dissipated of E1 is equal to I squared times X ohms; that's the resistance times T1.

But now, let's think about what the energy dissipated at time T1 for our second resistor would be. The energy dissipated, if we just go back to this equation right over here, is going to be equal to T1 times our current. Remember, we have the same current going through both resistors; they're in series, so we have the same current there, I squared.

And then, what is going to be the resistance? Well, instead of an X, we have a 2X here. We can rewrite this as 2 times I squared times X times T1. Well, this right over here is the same thing as the amount of energy dissipated at time T1 in our first resistor, so this is E1.

So at time T1, the energy dissipated in our second resistor is going to be twice as much energy. What we want to look at is, at time T1, we want to have twice as much energy. This option only has a fourth as much, so we rule that out. This has half as much energy dissipated; rule that out. This has the same amount of energy dissipated; we rule that out.

But then here, at time T1, we have dissipated twice as much energy, so we like that choice right over there. Another way to think about it is if you have the same current going through two resistors, and the second resistor has twice the resistance, in any given amount of time for the second resistor, you're going to dissipate twice as much energy.

Another thing about it: you'll have twice the slope of this line. So this one right over here clearly has twice the slope of this, or you could say, for any given amount of time, so from time equals 0 to T1, you would dissipate twice as much energy. So instead of E1, you would dissipate 2 times E1.

More Articles

View All
The Truth About Toilet Swirl - Northern Hemisphere
Hey it’s me Destin. Welcome back to Smarter Every Day. Here’s the deal. I’ve created a video in the northern hemisphere and Derek from Veritasium has created one in the south. You have to synchronize these two videos in order for this to make any sense, b…
Poor Visibility and Cold Fingers | Life Below Zero
With her loader on its way to Kavik, Sue attempted to meet the convoy to guide them to camp safely. However, dangerous conditions forced her to return home. Checking on the status and safety of the delivery crew is a priority. “Hack, a cold! I mean, comi…
Gustaf Alströmer - Growth for Startups
My name is Gustav. I’m gonna give a talk on growth for startups. This is gonna be for some of you guys, not super relevant right now because you might not have launched and thinking too much about growth when you’re having a launch isn’t that relevant. Bu…
Alpha decay | Physics | Khan Academy
Why doesn’t our periodic table go on forever? Why don’t we have, for example, elements with 300 protons? So, say, a TH000 protons. Well, the short answer is because the heavier the elements, the more unstable they become. For example, elements about atomi…
Significant | Vocabulary | Khan Academy
Wordsmith, hello! We’ve got important work to get to, so I won’t keep you. The word we’re looking at in this video is “significant.” It’s an adjective. It means important, worth paying attention to, a large amount. Something can be emotionally significan…
Transforming a Studio Apartment | National Geographic
A studio apartment in the big city, a small and strange environment. This human has boldly traveled far from a natural countryside habitat but is not as adapted to this harsh alien world. It threatens her instinctual behavior. Her ears are assaulted like …