yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Flipping and compressing a graph


3m read
·Nov 11, 2024

The graph of y is equal to the absolute value of x is reflected across the x-axis and then compressed vertically by a factor of 8/3. What is the equation of the new graph?

All right, so let's think about this step by step. If I start, and I'm just going to draw some quick hand-drawn sketches here, so that's my x-axis; that is my y-axis. If we're talking about the graph of y is equal to the absolute value of x, that looks like this. In the first quadrant, it looks like y equals x, and in the second quadrant, it looks like y = |x| because the absolute value of a negative number is its opposite.

So let me make it look a little bit more symmetric than that, so it looks something like that. That's what the graph of y is equal to the absolute value of x looks like. Now, they're asking us to do what amounts to two different transformations. The first one is they want to reflect it; they want to reflect across the x-axis, so they want us to flip it across the x-axis like this.

So instead, it looks like this. So that graph, that equation that describes this graph, well, this is going to be the opposite. Whatever y you were getting on this orange graph, you're going to get the negative of that. So you're going to get y is equal to the negative of the absolute value of x.

And if this doesn't make intuitive sense to you, try it out in the orange graph. When x is equal to, let's say, 2, well, the absolute value of two is two; the absolute value of -2 is two. But now we want to take the absolute value, but then take the negative of it. This thing stays nonpositive the entire time, so the absolute value of 2 is two, but we want the opposite of that; we want -2. The absolute value of -2 is two, but we want the opposite of that.

But they didn't ask us to just reflect across the x-axis; they then want us to compress vertically by a factor of 8/3. So let's think about this a little bit. Compress vertically by a factor of 8/3. So if they said stretch vertically by a factor of 8/3, then I would just multiply this by 8/3.

Sometimes it's helpful to think of this in terms of a mixed number: 8/3 is the same thing as 2 and 2/3. So, if you were to stretch by two and 2/3, you would get taller; you would look something like this. But if you are compressing, then it's going to look something like this. If you're compressing vertically, you can think about it as being stretched horizontally.

So, if you're compressing by a factor, you should multiply by the reciprocal of that factor. Think about it: if you were compressing by three, you would multiply by 1/3. So, if you are compressing vertically by 8/3, well, that means whatever y you would have gotten, you multiply that times the reciprocal of 8/3.

Or you could—another way you could think about it—you could divide that by 8/3. So, if we want to get this right over here, this is going to be y is equal to the negative absolute value of x. Since we're compressing by 8/3, we would divide that by 8/3, or another way to think about it: dividing by 8/3 is the same thing as multiplying by the reciprocal, so 3/8 times the absolute value of x.

And when we look at our choices, we see that it is that choice right over there. And I really want to stress this point because I think it can get a little bit confusing. The reason why I multiplied that by the reciprocal is we're saying compressing vertically. If we said stretching vertically, we would just multiply by 8/3, but since we're compressing, we would divide by 8/3 or multiply by its reciprocal.

More Articles

View All
Mark Zuckerberg : How to Build the Future
Welcome to How to Build the Future Today. Our guest is Mark Zuckerberg. Uh, Mark, you have built one of the most influential companies in the history of the world, so we are especially excited that you are here. I’m not sure where to go from there. Um, wh…
Proof of the derivative of sin(x) | Derivatives introduction | AP Calculus AB | Khan Academy
What we have written here are two of the most useful derivatives to know in calculus. If you know that the derivative of sine of x with respect to x is cosine of x and the derivative of cosine of x with respect to x is negative sine of x, that can empower…
Relating number lines to fraction bars
We are asked what fraction is located at point A on the number line, and we can see point A right there. Pause this video and see if you can answer that. All right, now there’s a bunch of ways that you could think about it. You could see that the space b…
Modeling with basic exponential function
There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year. Write a function that gives the deer population P of t on the reservation T years from now. All right, let’s think about this. And like always, pause this …
The Hindu Interpretation of Creation | The Story of God
In the beginning, Hindus believed Ganga flowed in the heavens, but she was held captive by the creator god Brahma. Then Brahma decided to send the river Ganga down to Earth, but there is one problem: Ganga has got such mighty floods, and if she comes on E…
How to catch a Dwarf Planet -- Triton MM#3
The 14 moons of Neptune are a strange bunch. Most of them are small, potato-shaped pieces of ice and rock. Some are so far away from Neptune that they need 29 years to circle Neptune once. Almost all of them are asteroids trapped by Neptune’s gravity. 99…