yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Flipping and compressing a graph


3m read
·Nov 11, 2024

The graph of y is equal to the absolute value of x is reflected across the x-axis and then compressed vertically by a factor of 8/3. What is the equation of the new graph?

All right, so let's think about this step by step. If I start, and I'm just going to draw some quick hand-drawn sketches here, so that's my x-axis; that is my y-axis. If we're talking about the graph of y is equal to the absolute value of x, that looks like this. In the first quadrant, it looks like y equals x, and in the second quadrant, it looks like y = |x| because the absolute value of a negative number is its opposite.

So let me make it look a little bit more symmetric than that, so it looks something like that. That's what the graph of y is equal to the absolute value of x looks like. Now, they're asking us to do what amounts to two different transformations. The first one is they want to reflect it; they want to reflect across the x-axis, so they want us to flip it across the x-axis like this.

So instead, it looks like this. So that graph, that equation that describes this graph, well, this is going to be the opposite. Whatever y you were getting on this orange graph, you're going to get the negative of that. So you're going to get y is equal to the negative of the absolute value of x.

And if this doesn't make intuitive sense to you, try it out in the orange graph. When x is equal to, let's say, 2, well, the absolute value of two is two; the absolute value of -2 is two. But now we want to take the absolute value, but then take the negative of it. This thing stays nonpositive the entire time, so the absolute value of 2 is two, but we want the opposite of that; we want -2. The absolute value of -2 is two, but we want the opposite of that.

But they didn't ask us to just reflect across the x-axis; they then want us to compress vertically by a factor of 8/3. So let's think about this a little bit. Compress vertically by a factor of 8/3. So if they said stretch vertically by a factor of 8/3, then I would just multiply this by 8/3.

Sometimes it's helpful to think of this in terms of a mixed number: 8/3 is the same thing as 2 and 2/3. So, if you were to stretch by two and 2/3, you would get taller; you would look something like this. But if you are compressing, then it's going to look something like this. If you're compressing vertically, you can think about it as being stretched horizontally.

So, if you're compressing by a factor, you should multiply by the reciprocal of that factor. Think about it: if you were compressing by three, you would multiply by 1/3. So, if you are compressing vertically by 8/3, well, that means whatever y you would have gotten, you multiply that times the reciprocal of 8/3.

Or you could—another way you could think about it—you could divide that by 8/3. So, if we want to get this right over here, this is going to be y is equal to the negative absolute value of x. Since we're compressing by 8/3, we would divide that by 8/3, or another way to think about it: dividing by 8/3 is the same thing as multiplying by the reciprocal, so 3/8 times the absolute value of x.

And when we look at our choices, we see that it is that choice right over there. And I really want to stress this point because I think it can get a little bit confusing. The reason why I multiplied that by the reciprocal is we're saying compressing vertically. If we said stretching vertically, we would just multiply by 8/3, but since we're compressing, we would divide by 8/3 or multiply by its reciprocal.

More Articles

View All
Vlog: I counted almost $30,000,000 worth of cars in this parking lot!
What’s up you guys? It’s Graham here. So it seems like every 10,000 subscribers, I end up doing another vlog, and since I just hit 30,000 subscribers, here’s another vlog! I actually think it’s more like 34,000 by the time I’m actually doing this. I’m pro…
Periodicity of algebraic models | Mathematics III | High School Math | Khan Academy
We’re told Divya is seated on a Ferris wheel at time T equals zero. The graph below shows her height H in meters T seconds after the ride starts. So at time equals zero, she looks like about two. What is this? This would be one and a half, so it looks lik…
Safari Live - Day 202 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon, ladies and gentlemen, and welcome again to another afternoon sunset safari with us here in June and the Sab…
Behind the Scenes at YouTube - Smarter Every Day 64
Kiss. Have a kiss, Mommy. All right, bye everybody. Love you too! Hey, it’s me, Destin. Welcome back to Smarter Every Day. I’m at YouTube headquarters here in San Bruno, California, and we’re going to learn about two things today. First, last week’s vi…
Characters' thoughts and feelings | Reading | Khan Academy
Hello readers! Today we’re going to talk about mind reading, also known as understanding characters’ thoughts and feelings. I’m kind of serious here. One of the things that I think is magical about reading books and stories is that they let you see what c…
Marcus Aurelius' Advice For Better Days
At dawn, when you have trouble getting out of bed, tell yourself, “I have to go to work as a human being. What do I have to complain of if I’m going to do what I was born for? The things I was brought into this world to do.” Or is this what I was created…