yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Power rule (with rewriting the expression) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice taking derivatives with the power rule.

So let's say we need to take the derivative with respect to x of 1 over x. What is that going to be equal to? Pause this video and try to figure it out.

So at first you might say, how does the power rule apply here? The power rule, just to remind ourselves, it tells us that if we're taking the derivative of x to the n with respect to x, so if we're taking the derivative of that, that's going to be equal to we take the exponent, bring it out front, and we've proven it in other videos. But this does not look like that.

The key is to appreciate that 1 over x is the same thing as x to the negative 1. So this is going to be the derivative with respect to x of x to the negative 1. Now this looks a lot more like what you might be used to. Where this is going to be equal to, you take our exponent, bring it out front, so that's negative 1 times x to the negative 1 minus 1, negative 1 minus 1.

So this is going to be equal to negative x to the negative 2, and we're done.

Let's do another example. Let's say that we're told that f of x is equal to the cube root of x, and we want to figure out what f prime of x is equal to. Pause the video and see if you can figure it out again.

Well, once again, you might say, hey, how do I take the derivative of something like this? Especially if my goal, or if I'm thinking that maybe the power rule might be useful. The idea is to rewrite this as an exponent. If you could rewrite the cube root as x to the one-third power, the derivative you take the one-third, bring it out front, so it's one-third times x to the one-third minus one power.

So this is going to be one-third times x to the one-third minus one is negative two-thirds, negative two-thirds power, and we are done.

Hopefully, through these examples, you're seeing that the power rule is incredibly powerful. You can tackle a far broader range of derivatives than you might have initially thought.

Let's do another example, and I'll make this one really nice and hairy. Let's say we want to figure out the derivative with respect to x of the cube root of x squared. What is this going to be?

Actually, let's just not figure out what the derivative is; let's figure out the derivative at x equals 8. Pause this video again and see if you can figure that out.

Well, what we're going to do is first just figure out what this is, and then we're going to evaluate it at x equals 8. The key thing to appreciate is this is the same thing, and we're just going to do what we did up here as the derivative with respect to x.

Instead of saying the cube root of x squared, we could say this is x squared to the one-third power, which is the same thing as the derivative with respect to x of well x squared. If I raise something to an exponent and then raise that to an exponent, I could just take the product of the exponents.

So this is going to be x to the 2 times 1/3 power or to the two-thirds power. Now this is just going to be equal to, I'll do it right over here, bring the two-thirds out front: two-thirds times x to the... What's two-thirds minus one? Well, that's 2/3 minus 3/3, or it would be negative 1/3 power.

We want to know what happens at x equals 8. So let's just evaluate that. That's going to be two-thirds times x, which is equal to 8 to the negative 1/3 power. Well, what's 8 to the 1/3 power? 8 to the 1/3 power is going to be equal to 2.

So 8 to the negative 1/3 power is one-half. Actually, let me just do that step by step. So this is going to be equal to two-thirds times we could do it this way: one over eight to the one-third power, and so this is just one over two.

Two-thirds times one-half, well, that's just going to be equal to one-third, and we're done.

More Articles

View All
Algorithms and selection | Intro to CS - Python | Khan Academy
Imagine you’re playing a word game where you need to guess only three words. What strategy might you use to solve for all the words in this game? One approach might be to just guess all of the letters in alphabetical order. So you start by guessing A, the…
Phenotype plasticity | Heredity | AP Biology | Khan Academy
The folks you see in this picture are two NASA astronauts who also happen to be identical twins. On the left here, this is Mark Kelly; you can see his name on his patch right over there. And then this is Scott Kelly. The reason why we want to look at the…
Debugging with stack traces | Intro to CS - Python | Khan Academy
Debugging is just a fancy term for fixing errors in programs. It’s the process of removing bugs, so we call it “debug” since it’s something we’ll be doing often. Let’s learn how to work together with our IDE to track down and fix bugs in our programs. He…
Experiencing the currents of the coral reef | Never Say Never with Jeff Jenkins
JEFF: I’m a big guy, so I didn’t think that a current could actually push my body the way that it is. The most challenging thing about being in this current is to be at the mercy of Mother Nature and allowing the current to take you wherever it takes you…
Why You Care So Much
I made my first video on this channel in July 2017 after months of going back and forth on whether or not I actually wanted to create a YouTube channel. What would people think? What if people hate the videos and tell me that I don’t know what I’m talking…
AC analysis intro 2
So in the last video, we started working on the analysis of an RLC circuit that had a forcing function. The math for doing that gets really hard, and so what we decided to do was see what happens if we limit ourselves to using just sinusoidal inputs that …