yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples thinking about power in significance tests | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

A significance test is going to be performed using a significance level of five hundredths. Suppose that the null hypothesis is actually false. If the significance level was lowered to 100, which of the following would be true?

So pause this video and see if you can answer it on your own.

Okay, now let's do this together and let's see. They're talking about how the probability of a type 2 error or the power would change. So before I even look at the choices, let's think about this.

We've talked about in previous videos that if we increase our level of significance, that will increase our power and power is the probability of not making a type 2 error. So that would decrease the probability of making a type 2 error. But in this question, we're going the other way. We're decreasing the level of significance, which would lower the probability of making a type 1 error but this would decrease the power. It actually would increase the probability of making a type 2 error.

And so which of these choices are consistent with that? Well, choice A says that both the type two error and the power would decrease. Well, those don't… these two things don't move together. If one increases, the other decreases, so we rule that one out. Choice B also has these two things moving together, which can't be true. If one increases, the other decreases.

Choice C: the probability of a type II error would increase. That's consistent with what we have here and the power of the test would decrease. Yep, that's consistent with what we have here, so that looks good.

And choice D is the opposite of that; the probability of a type 2 error would decrease. So this is— they're talking about this scenario over here and that would have happened if they increased our significance level, not decreased it. So we could rule that one out as well.

Let's do another example. Asha owns a car wash and is trying to decide whether or not to purchase a vending machine so that customers can buy coffee while they wait. She'll get the machine if she's convinced that more than 30 percent of her customers would buy coffee.

She plans on taking a random sample of n customers and asking them whether or not they would buy coffee from the machine and she'll then do a significance test using alpha equals 0.05 to see if the sample proportion who say yes is significantly greater than 30 percent.

Which situation below would result in the highest power for her test? So again pause this video and try to answer it.

Well, before I even look at the choices, we can think about what her hypotheses would be. Her null hypothesis is—you could kind of view it as a status quo, no news here—and that would be that the true population proportion of people who want to buy coffee is 30 percent.

And that her alternative hypothesis is that no, the true population proportion, the true population parameter there is greater than 30 percent.

And so if we're talking about what would result in the highest power for her test—so a high power means the lowest probability of making a type 2 error. In other videos we've talked about, it looks like she's dealing with the sample size and what is the true proportion of customers that would buy coffee.

And the sample size is under her control; the true proportion isn't. Don't want to make it seem like somehow you can change the true proportion in order to get a higher power. You can change the sample size but the general principle is: the higher the sample size, the higher the power.

So you want the highest possible sample size and you're going to have a higher power if the true proportion is further from your hypothesis—your null hypothesis proportion. And so we want the highest possible n and that looks like an n of 200, which is there and there.

And we want a true proportion of customers that would actually buy coffee as far away as possible from our null hypothesis which once again would not be under Asha's control. But you can clearly see that 50 is further from 30 than 32 is. So this one, choice D, is the one that looks good.

More Articles

View All
Roe v. Wade | Civil liberties and civil rights | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy. Today we’re learning more about Roe vs. Wade—the 1973 Supreme Court case that ruled that the right of privacy extends to a woman’s decision to have an abortion. To learn more about Roe vs. Wade, I spoke to two experts on…
Homeroom with Sal & Pedro Noguera - Wednesday, October 21
Hi everyone, Sal Khan here. Welcome to the Homeroom live stream. We have a really exciting guest today, Pedro Noguera, who is the Dean of the Rossier School of Education at the University of Southern California. So start thinking of your questions, puttin…
Why The Stock Market JUST Dropped
What’s up, Graham? It’s guys you here, and I know I always preach the age-old sayings: don’t time the market, buy and hold; time in the market beats timing the market; the stock market is not the economy; and the market can remain irrational longer than y…
Calculating neutral velocity | Special relativity | Physics | Khan Academy
All right, we can now do the math to solve for v. So let me just simplify the right-hand side of this equation. v minus negative e? Well, that’s just going to be two v. One minus negative of v squared over c squared? Well, that’s just one plus positive v…
Gradient and graphs
So here I’d like to talk about what the gradient means in the context of the graph of a function. In the last video, I defined the gradient, um, but let me just take a function here. The one that I have graphed is (x^2 + y^2) (f of xy = (x^2 + y^2)). So,…
A Taxing Time | Teacher Resources | Financial Literacy | Khan Academy
If I say the phrase “tax season” to you, you likely imagine a period in spring leading up to the middle of April. This is, after all, when Tax Day falls on or around April the 15th. However, what if I were to tell you that tax season was every season? Wha…