yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Danae Ringelmann at Startup School SV 2014
First of all, this is totally awesome. Um, I want everybody to actually take a minute, a moment of silence, and appreciate the fact that you’re here. Um, and appreciate the fact that your whole life has been leading to this point. You might all be thinkin…
How To Do This ‘Stoic’ Thing? | Books
How can we apply Stoicism in our daily lives? This is what a book, Practical Stoicism: Exercises for Doing the Right Thing Right Now, is all about. Robbing Homer offered me the opportunity to listen to the Audible version of this book, which he narrated, …
Indefinite Pronouns | The parts of speech | Grammar | Khan Academy
Hey grammarians! Today, I want to talk about the idea of the indefinite pronoun, which looks kind of complicated, but really just does what it says on the tin. An indefinite pronoun is just that: it’s indefinite, undefined, uncertain. These are pronouns t…
Worked example: Derivative of cos_(x) using the chain rule | AP Calculus AB | Khan Academy
Let’s say we have the function f of x, which is equal to cosine of x to the third power. We could also write it like this: cosine of x to the third power. We are interested in figuring out what f prime of x is going to be equal to. So, we want to figure o…
Relative maxima and minima worked example
This is the Khan Academy exercise on relative maxima and minima, and they ask us to mark all the relative maximum points in the graph. Like always, pause this video and see if you can figure out which are the relative maximum points. Okay, now let’s work…
The Most Important Things That Make or Break a Good Life
Hello Elixers and welcome back to our channel! This video is for everybody, regardless of where you are in your life, sort of a back to basics. You know, it’s good to have a refresher once in a while. We know you’ll love this one. Welcome to Alux! Now, …