yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Koala Encounters
[Applause] I’m out on the Great Ocean Road, and I’ve just spotted my first koala in the wild, uh, since moving to Australia 7 years ago. He’s pretty amazing, uh, looks like he’s just woken up, and he’s a little bit groggy. Um, as you can see, koalas don’…
Why do midterm congressional elections matter? | US government and civics | Khan Academy
[Narrator] Why do midterm congressional elections matter? Congressional elections matter because they are often, and have increasingly been, a referendum on the president. So, it is a kind of real test from real voters doing real voting about whether pe…
Why Chasing Happiness is Pointless (The Hedonic Treadmill)
Centuries ago, Siddhartha Gautama was born a prince, with a prophecy declaring that he would become either a great king or a spiritual leader. His father didn’t like the idea of his son walking the spiritual path; he wanted him to become a powerful ruler,…
Perilous Red Crab Migration | Incredible Animal Journeys | National Geographic
In the Indian Ocean, another mom said time her journey to perfection. On a tiny speck of land, monsoon rains trigger a miracle of nature. She may not look that impressive, but this little Christmas Island red crab, around the size of your hand, is on a mi…
Young Haitian Photographers Capture Haiti in a New Light | National Geographic
If Haiti doesn’t want you here, she is living everything in her power to make you so miserable that you will run screaming for the next airplane out. But if she loves you, if she sees in you a kindred spirit, she rings your heart out every day and she has…
Justification with the intermediate value theorem: equation | AP Calculus AB | Khan Academy
Let g of x equal one over x. Can we use the intermediate value theorem to say that there is a value c such that g of c is equal to zero and negative one is less than or equal to c is less than or equal to one? If so, write a justification. So in order t…