yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
The AMAZING Benefits of COLD Showers
Hey, it’s Joey and welcome to Better Ideas. You’ve probably heard the news - cold showers are the secret to unlocking your inner potential and giving you superpowers beyond your wildest dreams. Now, there are a ton of YouTube videos and articles online t…
15 Ways to Get Mentally Stronger
Did you know that mentally tougher athletes consistently outperform their mentally weaker counterparts? A recent study has shown that roughly 80 percent of mentally tough athletes tend to achieve more or perform better. Now, it goes without saying that be…
Worked example: Rewriting definite integral as limit of Riemann sum | AP Calculus AB | Khan Academy
Let’s get some practice rewriting definite integrals as the limit of a Riemann sum. So let’s say I wanted to take the definite integral from π to 2π of cosine of x dx. What I want to do is write it as the limit as n approaches infinity of a Riemann sum. …
Michael Seibel - Startup Investor School Day 2
So just a couple of notes. If you’ve noticed, a lot—maybe all—of the presenters thus far are YC people. That’s not going to end right now. However, the rest of the course is mostly, almost exclusively, perspectives on investing from outside of YC. So, don…
Michael Burry Is Predicting an Even Bigger Crash.
As you guys probably saw from my video a few weeks ago, Michael Burry, the man that famously predicted the ‘08 housing bubble, is currently predicting another very large recession and stock market crash in 2022 on the back of all the inflation we’re curre…
Target Practice for Turkeys | Live Free or Die
So I’m going to, I’m going to call out some of these turkeys to go on a date with me, and I’ve been working on my call really. Yeah, it goes like this: you sounded like a turkey. Spring and turkey hunting go hand in hand. At the mountains of North Carolin…