yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Genius: Aretha | Behind the Scenes with the A-Team
Hey, marker. Chat, here we go, and action. The queen of souls, I was looking the word up—genius, an exceptional quality. So, of course, Aretha Franklin has an exceptional quality. She has her beautiful voice, her amazing and brilliant piano playing, and …
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 1) | Nat Geo Live
They asked me to, um, start off this speech with a kick. He keeps getting them in and getting them. I mean, J, you cannot eat this stuff! You know what the best thing to do, if you can get in there, just pull it out like a comb. Oh, all right, man, God. …
BEST of MARGIN CALL #3 - First Meeting
So, Sam, what do you have for us? It’ll be here in a minute. Finding somebody in the copy room at this hour was a little bit of a challenge. Okay, let’s go right into the introductions. This is Sarah Robertson, who you know. Chief Risk Management Office…
Estimating 2 digit multiplication example
So we are asked, “?” is roughly equal to this squiggly equal sign right over here. This means roughly equal to, so not exactly equal to 44 times 78. So one way to think about it is 44 times 78 is roughly equal to what? So they’re really asking us to esti…
If FACEBOOK was a VIDEO GAME ... (Fake Game Trailer)
[Music] Are you guys bored? Well, check this out! Vsauce Fate Games presents Facebook: The Game. Would you guys like something like that? Well, pop in the cartridge and explore 150 million profiles. Avoid the dangerous, murderous pokes! Do people even do …
Re: Randyom Neuron (Reply to Everett)
Hey Randy, Um, I’m having a bit of trouble trying to explain myself in the comments, as you’ve probably noticed. So, this is a short video. Um, Everett’s requirement for free work for free will, or rather one of them, was that not only does the self have…