yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Benefits explained | Employment | Financial Literacy | Khan Academy
Hi everyone! So, what I’m going to do in this video is really go through a bunch of terms that you’re going to see when thinking about benefits from your employer. The whole goal here is so that you’re never lost when you hear an acronym like 401k—well, t…
Earth's changing climate | Earth and society | Middle school Earth and space science | Khan Academy
Have you ever tried to imagine what the world was like in the distant past? Maybe you’d like to explore the age of the dinosaurs, when the Earth was much hotter than it was today. Perhaps you’d prefer when temperatures dropped to much colder than today. Y…
Answering google's most searched questions of 2019..
So the Internet is a big place. There’s a lot of people on it, a lot of curious people. Things they want to do, stuff they want to learn, and that’s great and all. You know, it’s always good to learn things; you should never stop learning. Search engines …
Why you SHOULDN'T invest in Real Estate...
What’s up you guys? It’s Graham here. So, I realized that probably 80% of the videos on this channel are all about the benefits and my excitement of owning real estate. Now for me, this has been something that I’ve been doing since I was 18 years old. So…
How to BLOW UP YOUTUBE !!! -- Up All Knight # 5
Hello Vsauce! Today we’ve got a new episode of Up All Night where I show off my favorite geeky and techie pranks. First, just in time for April Fool’s Day, we’ve got two wiggly calms. Now be careful because when you go there, it causes your browser window…
Step inside the $20,000,000 Falcon 7X. 🛩
This is a $20 million plane, and this is Steve. He’s selling it. Should we go take a look inside? Let’s go. So, we are now inside the aircraft. Steve, could you please tell us a little bit more? Sure! Most of these airplanes have these first four forwar…