yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
The Shadow | Why We’re More Evil Than We Think
It seems like in current society we are excessively concerned with our self-image. But, even though we might think we’ve figured ourselves out, is this really the case? Or are we just showing the world - and ourselves - a mere reflection of who we truly a…
How Does A Carburetor Work? | Transparent Carburetor at 28,546 fps Slow Mo - Smarter Every Day 259
This is a carburetor, and this is a special 3D printed see-through carburetor. And this is a high-speed camera with a macro lens on it. You see where this is going. If you’ve ever cranked some type of lawn care product with a small engine on it, you have …
Competition is for Losers with Peter Thiel (How to Start a Startup 2014: 5)
All right, good afternoon. Uh, today’s speaker is Peter Thiel. Peter was the founder of PayPal and Palantir and Founders Fund, and has invested in, uh, most of the tech companies in Silicon Valley. And he’s going to talk about strategy and competition. Th…
60 Startup Founders Share How They Met Their Co-Founder
How did you meet your co-founder? Yeah, it’s a funny story. So, uh, do you want to take this one? [Music] So we went to school, college, College, college. They’re both French, but actually, we met at Stanford in California. Week two of MIT, we went to …
Catch of the Week - Wicked End | Wicked Tuna: Outer Banks
[Music] Here they are, 15 down to 25. We’re marking. I’m not going to rest easy until we’re ahead of Reel of Fortune. Come on, give me the go here in a [Music] second. We’re on, we’re on! Woohoo, there he goes! Double header! Watch that other rod! Hurry u…
Kevin O'Leary on how to get ahead in the workplace
[Applause] Welcome back to the social! If your New Year’s resolution is to make some positive changes in your life, there’s a lot to consider. Like, what’s the best way to get noticed by your boss, and when should you ask for a promotion? All good questi…