yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
How secure is 256 bit security?
In the main video on cryptocurrencies, I made two references to situations where in order to break a given piece of security, you would have to guess a specific string of 256 bits. One of these was in the context of digital signatures, and the other in th…
6 MORE Tricks, Hacks, and Pranks -- "Up All Knight" Episode 3
Knock knock. Who’s there? Panther. Panther who? Panther, no pan! I’m going swimming. [Music] [Applause] Thank you, thank you. Welcome to Up All Night! I’m a knight. I’m a horse. Nay! We’ve got a great show for you today. Topic number one: games an…
Impact of the Crusades
We’ve already had several videos where we give an overview of the Crusades. Just as a review, they happen over roughly 200 years during the High Middle Ages. The First Crusade, at the very end of the 11th century, was actually the most successful of the C…
How Does Kodak Make Film? (Kodak Factory Tour Part 1 of 3) - Smarter Every Day 271
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I love analog film photography. There’s something to me about being able to capture a memory in a physical object with light and physics and chemistry. It’s just beautiful. In a previous episode of…
How to sell a corporate jet!
Yes, sir. I have a customer from overseas who would like to purchase an airplane. Do you know what kind of airplane he’s looking for? From what I understand, they’re looking at a Lear Jet 60XR. Does that mean anything to you? Yeah, I know it does, but th…
The One Question That Will Get You Ahead
Let’s have an honest talk, shall we? Do you truly want to be successful? Do you want to live that unbothered life and never worry about anything ever again? If this is your goal, well, it’s time for a reality check. Ask yourself the following question: W…