yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Photo Evidence: Glacier National Park Is Melting Away | National Geographic
All the glaciers are shrinking. In the 1800s, they were estimated to be about 150 glaciers here; however, today we only have 25 glaciers. The glaciers are measured by a number of different ways. One of the most obvious ones is using repeat photography, wh…
The World in UV
Hey, you look purple! I guess I should come clean. Can you smile for me? Eating my two front teeth are fake. Oh my god, they’re purple! And fake teeth look different than real teeth in the ultraviolet. That’s crazy! [Music] [Applause] [Music] At first g…
Stratospheric Ozone Depletion| Global change| AP Environmental Science| Khan Academy
In this video, we’re going to talk about a molecule known as ozone. Ozone you can also view as O3 or three oxygens bonded this way. These dashed lines show that sometimes the double bond is on this side, sometimes it’s on that side. You might recognize th…
Rewriting a quadratic function from vertex form to standard form | Khan Academy
So what I have right over here is the equation of a function in vertex form. What I want to do is rewrite it so it is in standard form. So pause this video and have a go at that before we do it together. All right, let’s just remind ourselves what standa…
Trig limit using pythagorean identity | Limits and continuity | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as theta approaches 0 of ( \frac{1 - \cos(\theta)}{2 \sin^2(\theta)} ). And like always, pause the video and see if you could work through this. Alright, well our first temptation is to say, well, this is going to be th…
Before Free Solo | Edge of the Unknown on Disney+
[SUSPENSEFUL MUSIC] MAN 1: Morocco, it’s off the map. No one would know about it. This was a place where he could test himself, both physically and mentally with a massive amount of climbing. And then, he wanted to free solo one of the big walls at the e…