yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Creativity break: how do you apply creativity to biology? | High school biology | Khan Academy
[Music] [Music] One question that people ask me is, how do I apply creativity to the presentations that I give? My secret sauce is to come up with a visual image that anybody—I don’t care if you’re an adult, whether you’re a fifth grader or second grader…
Explorers Festival, Thursday June 15 | National Geographic
from a distance it always seems impossible. But impossible is just a place we haven’t been to yet. Impossible is what beckons us to go further, to explore. It calls us from the wild, lures us into the unknown, asks us to dig deeper, to look at things from…
EXCLUSIVE: "Glowing" Sea Turtle Discovered | National Geographic
Wait, what did you find? We found a biofluorescent turtle! The scientists have only really tuned in to biofluorescence in the last 10 years, and as soon as we started tuning into it, we started to find it everywhere. First, it was in corals and jellyfish…
Using units to solve problems: Toy factory | Working with units | Algebra I | Khan Academy
We’re told a factory makes toys that are sold for ten dollars a piece. The factory has 40 workers, and they each produce 25 toys a day. The factory is open five days a week. What is the total value of toys the factory produces in a day? Pause this video …
Catch of the Week - Wicked Ride | Wicked Tuna: Outer Banks
[Applause] [Music] [Applause] But the forecast, as bad as it is, I want to try to catch one and get the heck out of here as soon as we can. We’re marking them, D. We got a tun on! He is pulling! Oh my gosh, he’s pulling! There’s color right here! I can…
Implanting Memories | Breakthrough
My work focuses on finding individual memories in the brain and actually turning them on or off. We had a series of projects where we started off by asking really simply: can we go in and can we just find a memory in the brain? Can we isolate a memory in …