yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Be Too Busy to “Do Coffee”
We squander our time with the death of a thousand cuts. So another tweet ahead was, “You should be too busy to do coffee while still keeping an uncluttered calendar.” People who know me know that I’m famous for simultaneously doing two things. One is havi…
Taking Landscape Photos | National Geographic
Being confirmed as a finalist, nothing like this has ever happened to me before in my life. I still can’t believe I made it to this point. I can only hope that my photographs give people a sense of who I am. My name is Nina Ritchie, and I live in Chinle,…
How to HACK Flash Games -- And More! *DONG*
Dang it. This is too real. I want something I could do online now, guys. DONG. Let’s start things off with a Tetris Overload. ‘Muse13NJ’ showed me this first person Tetris. When you turn a piece, so does your perspective. It’s fun, but ‘Dixavd’ would rath…
Visualizing the COVID-19 Tragedy - 360 | National Geographic
As a visual artist, I couldn’t let this happen. When words go unheard and numbers get too large, so they’re easy to dismiss, art has to take the lead. And so I wanted to use art to make the number comprehensible. White is important; white is the color of …
How to sell a $20,000,000 private jet 👀🛩️
What are you calling about? I’m calling about the business who’s inquiring. Although I’m not a broker, I am brokering an aircraft for a friend of mine. Okay, so 5343, what’s the price? That airplane’s price is at 99 currently over in Europe, or is it ou…
How Airbnb Will CRASH the Housing Market
Nobody is paying attention to something that could finally burst the Ducky Long bubble in the U.S. housing market. Everyone is worried about the housing market crashing. Stocks have gotten crushed this year; bonds have pummeled. The concern is that real e…