yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Astronaut Mike Massimino Talks with Kids | One Strange Rock
So how do you go Ah ha! How do you think? What happened? You’re rubbing your head. Oh, no. Right here is just aching. It is? Yeah, I don’t know why. Is it the conversation? Like my brain is just so excited. Your brain is so excited? Yeah. I’ve ne…
Finding missing side length when given perimeter | Math | 3rd grade | Khan Academy
The perimeter of the figure is 24 centimeters. What is the length of the missing side? So, we’re told this figure down here has a perimeter of 24 centimeters. The perimeter is 24 centimeters, so what that tells us is that the distance around the entire o…
Restoring a lost sense of touch | Podcast | Overheard at National Geographic
[Music] As a kid growing up in the late 70s, science fiction was all about bionic body parts. There was the six million dollar man with the whole “we can rebuild him better than he was before,” and then most famously in a galaxy far far away there was Luk…
Harmonic series and 𝑝-series | AP®︎ Calculus BC | Khan Academy
For many hundreds of years, mathematicians have been fascinated by the infinite sum which we would call a series of one plus one-half plus one-third plus one-fourth, and you just keep adding on and on and on forever. This is interesting on many layers. O…
SURPRISE VLOG: Las Vegas
Okay, enough of that. This is not going to be a cinematic vlog here; I’m just showing you what I’ve been up to lately and right now. I need to get from London to Las Vegas and back again in 72 hours. This is guaranteed to be a jet lag disaster. But I have…
Introduction to vitamins and minerals | Biology foundations | High school biology | Khan Academy
We’ve been told throughout our lives to eat certain foods because they contain vitamins, or sometimes people might say they also contain some minerals that you need. So the obvious question is, well, what are vitamins and what are these minerals that fol…