yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Finding derivative with fundamental theorem of calculus | AP®︎ Calculus AB | Khan Academy
Let’s say that we have the function g of x, and it is equal to the definite integral from 19 to x of the cube root of t dt. What I’m curious about finding, or trying to figure out, is what is g prime of 27? What is that equal to? Pause this video and try …
Weekend Wednesday
The way the work week works is the worst. Waking up on Monday, you’ve got five days in a row of work or school. It’s too much. For, by Wednesday, withered is your soul with two more days, nay three more days, until the weekend. But, alas. The weekend is a…
What Is Chemistry?
Hi, I’m Fiona McDonald and today we’re finding out what chemistry means to the average Australian. How would you describe chemistry? [Laughter] Um, like test tubes. I’m not a very big science fan, so I don’t really know any much about it. No idea. H, c…
Introduction to price elasticity of supply | APⓇ Microeconomics | Khan Academy
We’ve done many videos on the price elasticity of demand. Now we’re going to focus on the price elasticity of supply, and it’s a very similar idea; it’s just being applied to supply. Now, it’s a measure of how sensitive our quantity supplied is to percen…
How I got banned from sports betting... - Arbitrage Betting Explained
I know you’re thinking that thumbnail was clickbait, but it’s not. It’s definitely true! Today, guys, I’m going to go through exactly how I got banned—I’m not joking—how I got banned from a sports betting website here in Australia. This is actually a pret…
YC SUS: Eric Migicovsky hosts founder office hours
Cool! I think so, yeah. Hi everyone, my name is Eric Michalski. Whoops! I just got a gift from Zune. My name is Eric Michalski. I’m a partner here at Y Combinator, and I’m the course facilitator for Startup School. Welcome to a new experiment that we’re g…