yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Immerse Yourself in the Rugged Beauty of Ireland's West Coast | National Geographic
I don’t think anybody can live and be here for very long periods of time without falling completely in love with the place in the sea and the hills and everything it has to offer. The cosine Harrods, there’s no defense against the Atlantic Ocean. You have…
Q&A With Grey: 500,000 Subscribers Edition
Hello Internet, Here we are: 500,000 subscribers – well, actually… by the time I finished this video it’s a bit more than that – but who knew that after I promised to do a Q&A that the pope would resign? Anyway… When I uploaded my first explanation …
COVERED IN CHICKS -- IMG! #41
A rooster… cat? And Ronald orders a number three. It’s episode 41 of IMG! City life. Oh hi. And here’s a necktie that’s formal and manly, though, of course, I prefer one piece cat faces. Too much coverage? Well, try on one of these or just wear a slice of…
Constructing linear and exponential functions from graph | Algebra II | Khan Academy
The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this …
Steal Sam Altman's Genius Note-Taking Method (Pocket Notebook Power!)
Hey, guys, today’s video is going to be something a little bit fun and different. Actually, a few weeks ago, I was watching a video with David Perell. I think I pronounced that correctly. And he does a lot of videos on how people write and interviews a lo…
11 SIGNS That You SHOULD END EVERY RELATIONSHIP even it's your family or friend | STOICISM INSIGHTS
Have you ever felt like you’re at a crossroads, holding onto a relationship or friendship because it’s comfortable, familiar, but deep down you know it’s holding you back from truly flourishing? It’s a tough pill to swallow, realizing that sometimes the p…