yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Dalton Caldwell - Startup Investor School Day 2
Hey, good morning! Thank you. We have a lot to do today, so I’d like to get my part out of the way as quickly as possible. Good morning again, and welcome to our second day of Startup Investor School. My role is a little bit more, but not much more than …
How To Invest In Real Estate: The ULTIMATE Guide to Calculating Cashflow (EASY)
What’s up you guys? It’s Graham here. So I realize that this video is very, very, very long overdue because I’ve been making three YouTube videos every single week for over two years, and I’ve yet to make a video about how to analyze the cash flow of a re…
What is Space Time? | StarTalk
What is space time? You already know. You have never met someone at a place unless it was also at a time. You have never met someone at a time unless it was– OK, I get it. I get it. So we– Whoa, well, wait a minute. What happens to a photon from 13 billi…
Vsauce Live Stream!
[Music] [Applause] [Music] Hey, Vsauce! Michael, Cameron, Jake here and we are very glad that you are here. What’s going on? Well, it’s our very first Vsauce YouTube livestream! They said it couldn’t be done, but actually, the technology has been possible…
Long run self adjustment | AP Macroeconomics | Khan Academy
What we have depicted here is an economy in long-run equilibrium. Notice the point at which the aggregate demand curve and the short-run aggregate supply curve intersect; that specifies an equilibrium price level (P₁) and an equilibrium level of output (Y…
Writing standard equation of a circle | Mathematics II | High School Math | Khan Academy
[Voiceover] So we have a circle here and they specified some points for us. This little orangeish, or, I guess, maroonish-red point right over here is the center of the circle, and then this blue point is a point that happens to sit on the circle. And s…