yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Catch of the Week - Hooked on a Monstah | Wicked Tuna
All right, behind the boat, you can see we’re right in the whales, circling us like jaws. It’s really good time for some June. It’s embark J. Yeah, we run real, real, real. You gotta pull it all the way, work it down. All right guys, you keep going. This…
The Scientific Revolution and the Age of Enlightenment | World History | Khan Academy
As we get into the 1500s, the Renaissance has been going on for roughly 200 years. Especially, Europe has been rediscovering the knowledge from the Greeks and from the Romans. As they enter into the 16th century, they start to go beyond the knowledge of t…
Mr. Freeman, part 61 UNCENSORED
There was a man who was constantly suffering. He was too hot, then too cold. He had too much, then too little. He wanted to scream from joy, then wanted to hide in the corner from angst. The stress was making his heart grow callous, his body deteriorate, …
The Future of War, and How It Affects YOU (Multi-Domain Operations) - Smarter Every Day 211
Hey, it’s me, Destin. This is hard to explain. So let me just start here. Everyone has a unique world view, and that world view is shaped by different perspectives. Perspectives are shaped by how you choose to spend your time. For the past 15 years, I h…
From Homeless To Owning A Bugatti | TheStradman
I decided to live in my Audi TT in Beverly Hills, California. I would just stand there on Rodeo Drive for eight to twelve hours a day, just hoping to see cool cars. Every evening, I would park outside McDonald’s, edit my videos, use their free Wi-Fi, post…
STOICISM | The Power Of Judgement
In earlier videos, I talked about the things that are up to us and the things that are not up to us. In this video, I want to go a bit deeper into how we approach life by a powerful yet dangerous tool in our toolbox: our judgment. [Music] First of all, …