yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion example: acceleration vector | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

A particle moves in the XY plane so that at any time ( T ) is greater than or equal to zero, its position vector is given. They provide us the X component and the Y component of our position vectors, and they're both functions of time. What is the particle's acceleration vector at time ( T = 3 )?

All right, so our position, let's denote that it's a vector-valued function. It's going to be a function of time; it is a vector. They already told us that the X component of our position is ( -3T^3 + 4T^2 ) and the Y component is ( T^3 + 2 ). So you give me any time greater than or equal to zero, I put it in here, and I can give you the corresponding X and Y components.

This is one form of notation for a vector. Another way of writing this, you might be familiar with engineering notation, it might be written like:

[
\mathbf{R}(T) = -3T^3 \mathbf{i} + 4T^2 \mathbf{j}
]

or sometimes people write this as unit vector notation:

[
-3T^3 \mathbf{u_x} + 4T^2 \mathbf{u_y}
]

This is just denoting the same thing. This is the X component; this is the Y component. This is a component in the horizontal direction; this is a component in the vertical direction, or the Y component.

Now, the key realization is if you have the position vector, well, the velocity vector is just going to be the derivative of that. So, ( \mathbf{V}(T) ) is just going to be equal to ( \mathbf{R}'(T) ), which is going to be equal to... well, you just have to take the corresponding derivatives of each of the components.

So let's do that. If we want to take the derivative of the X component here with respect to time, we're just going to use the power rule a bunch. So it's ( 3 \times -3 ), so it's ( -9T^2 ) and then plus ( 2 \times 4 = 8 ), so plus ( 8T ).

Then, over here for the Y component, the derivative of ( T^3 ) with respect to ( T ) is ( 3T^2 ), and the derivative of 2 is just zero. So actually, I have space to write that: ( 3T^2 ).

All right, and if we want to find the acceleration function, or the vector-valued function that gives us acceleration as a function of time, well, that's just going to be the derivative of the velocity function with respect to time.

So, this is going to be equal to... let me give myself some space. The X component, well, I just take the derivative of the X component again. Let me find a color I haven't used yet; I'll use this green.

So let's see: ( 2 \times 9 = 18T ) raised to the 1st power plus 8. The derivative of ( 8T ) is just 8 if we're taking the derivative with respect to ( T ). And then here in the orange, the derivative of ( 3T^2 ) using the power rule here over and over again gives us ( 2 \times 3 = 6T ).

So, we've just been able to find the acceleration function by taking the derivative of this position vector-valued function twice. Now, I just have to evaluate it at ( T = 3 ).

So, our acceleration at ( T = 3 ) is equal to: in green, it's going to be ( -9 \times 3^2 + 8 ), and then we're going to have ( 6 \times 3 ).

So what does this simplify to? Well, this is going to be equal to... let's see: ( -9 \times 3^2 = -81 ) and ( -81 + 8 = -73 ). Then for the Y component, we have ( 6 \times 3 = 18 ).

Did I do that arithmetic right? So this is ( -81 + 8 ), which would be ( -73 ), and ( 18 ) stays the same.

Yep, there you have it: the acceleration vector at ( T = 3 ) is:

[
(-73, 18)
]

That is its acceleration. That is its acceleration vector at ( T = 3 ).

More Articles

View All
Kevin Systrom at Startup School SV 2014
Kevin: Thanks a lot for joining us today. Audience: Absolutely! Kevin: Thanks for having me. This is a nice big crowd. Audience: Yeah, this is quite a few people. Kevin: Well, we can just launch right in, of course. I guess you know the crazy thing ab…
The Most-Photographed Toilet In New Zealand
Come with me as I poop in New Zealand’s most photographed public toilet, located in Kawakawa, near the top of the North Island. The Hundertwasser toilets are the final and only Southern Hemisphere project from reclusive artist Friedensreich Hundertwasser.…
Teacher Tim Vandenberg shares how mastery learning worked for his class | Homeroom with Sal
Hi everyone! Sal Khan here for our daily homeroom. For those of you all who are new to this, Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere. And when we saw the mass school closures, not just i…
For One Flint, Michigan School - This is the Last Dance | National Geographic
Good morning, second students! Today is Friday, calm day in Wildcat country, and these are your morning announcements. [Music] * Describe it. It’s like magical, like the Grammys. Words I get butterflies in my stomach. So, fashion show, a competition—i…
Patrolling the Bay on the New Hawk Five | To Catch a Smuggler: South Pacific | National Geographic
Summer in the Bay of Islands sees many yachts visiting from overseas, so Customs have their work cut out for them keeping the country’s coastal border safe. Today they’re patrolling on the new Hawk Five. It’s a serious vessel, loaded with tech, and can tr…
Don’t Buy The Dip | The Stock Market Is Broken
What’s up guys, it’s Graham here. So today, let’s try to answer one of the most puzzling questions of the market that some people spend their entire lives trying to decipher, and that would be: why did the market just go up? Is this the feared dead cat bo…