yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Rewriting limit of Riemann sum as definite integral | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So we've got a Riemann sum. We're going to take the limit as n approaches infinity, and the goal of this video is to see if we can rewrite this as a definite integral. I encourage you to pause the video and see if you can work through it on your own.

So let's remind ourselves how a definite integral can relate to a Riemann sum. If I have the definite integral from A to B of f of x, f of x DX, we have seen in other videos this is going to be the limit as n approaches infinity of the sum, capital Sigma, going from i equal 1 to n.

We're essentially going to sum the areas of a bunch of rectangles where the width of each of those rectangles we can write as Δx. So, your width is going to be Δx of each of those rectangles, and then your height is going to be the value of the function evaluated someplace in that Δx. If we're doing a right Riemann sum, we would do the right end of that rectangle or of that sub-interval.

We would start at our lower bound a and we would add as many Δx's as our index specifies. So if i is equal to 1, we add one Δx, so we'd be at the right of the first rectangle. If i is equal to 2, we add two Δx's, so this is going to be Δx times our index. This is the general form that we have seen before.

One possibility you could even do a little bit of pattern matching right over here. Our function looks like the natural log function, so that looks like our function f of x. It's the natural log function, so I could write that.

So, f of x looks like the natural log of x. What else do we see? Well, a that looks like two; a is equal to 2. What would our Δx be? Well, you can see this right over here, this thing that we're multiplying by, is divided by n, and it's not multiplying by an i.

This looks like our Δx, and this right over here looks like Δx * i, so it looks like our Δx is equal to 5/n. So what can we tell so far?

Well, we could say that, okay, this thing up here, the original thing, is going to be equal to the definite integral. We know our lower bound is going from 2; we haven't figured out our upper bound yet. We haven't figured out our b yet, but our function is the natural log of x, and then I will just write a DX here.

So, in order to complete writing this definite integral, I need to be able to write the upper bound. The way to figure out the upper bound is by looking at our Δx because the way that we would figure out a Δx for this Riemann sum here, we would say that Δx is equal to the difference between our bounds divided by how many sections we want to divide it into, divided by n.

So it's equal to (b - a) / n. You can pattern match here. If this is Δx is equal to (b - a) / n, let me write this down. So this is going to be equal to b - our a, which is 2, all of that over n. So b - 2 is equal to 5, which would make b equal to 7.

B is equal to 7. So there you have it. We have our original limit, our Riemann limit, or limit of our Riemann sum being rewritten as a definite integral.

And once again, I want to emphasize why this makes sense. If we wanted to draw this, it would look something like this. I'm going to try to hand-draw the natural log function; it looks something like this. This right over here would be one, and so let's say this is two.

We're going from 2 to 7. This isn't exactly right, and so our definite integral is concerned with the area under the curve from 2 until 7. This Riemann sum you could view as an approximation when n isn't approaching infinity, but what you're saying is, look, when i is equal to one, your first one is going to be of width 5/n.

So this is essentially saying our difference between 2 and 7; we're taking that distance 5, dividing it into n rectangles, and so this first one is going to have a width of 5/n. And then, what's the height going to be? Well, it's a right Riemann sum, so we're using the value of the function right over there, right at 2 + 5/n.

So this value right over here, this is the natural log, the natural log of 2 + 5/n, and since this is the first rectangle times 1, we could keep going. This one right over here, the width is the same, 5/n, but what's the height? Well, the height here, this height right over here is going to be the natural log of 2 + 5/n * 2.

This is for i equal to 2, and this is i equal to 1. So hopefully, you are seeing that this makes sense. The area of this first rectangle is going to be natural log of 2 + 5/n * 1 * 5/n.

The second one over here, natural log of 2 + 5/n * 2 * 5/n. This is calculating the sum of the areas of these rectangles, but then it's taking the limit as n approaches infinity, so we get better and better approximations, going all the way to the exact area.

More Articles

View All
Just How Expensive is the Stock Market Right Now?
Hey guys and welcome back to the channel. So I wanted to make this video to try and provide a balanced insight into the current state of the stock market. Because no doubt it can be hard to get a grip on what the hell is going on at a high level if you’re…
How Does A Wing Actually Work?
Shh… I’ve snuck into minutephysics’ studio to explain how a wing actually works. Hang on, something doesn’t feel right. Ah, that’s better. Now everyone knows that a wing generates lift due to its characteristic shape. Since air travels farther over top …
a chill day in my life
Good morning guys, it’s currently 11:20 a.m. - answering YouTube comments - okay so now it’s 12 and I think it’s enough scrolling so I’m just gonna delete all of the social media apps because it takes a lot of time. Let’s do my skincare - skincare time -…
Dostoevsky - Walk Your Own Path, Face Your Errors
In Crime and Punishment, Fyodor Dostoevsky wrote, “That’s man’s one privilege over all creation. Through error you come to the truth! I am a man because I err! You never reach any truth without making fourteen mistakes and very likely a hundred and fourte…
When Sex Turns Lethal | Original Sin: Sex
In modern day Monaco, if you want to get married, you need to post a written announcement on the town hall for 10 days. Across the globe, governments love to legislate who can and can’t get married for reasons of control, paranoia, or fear. Scientists at …
Touching a Meteor | StarTalk
As far as science was concerned, I was completely hopeless. I mean, I remember, um, in my biology class, I was put in the front row. I hated being in the front row because, you know, you’re in direct contact with the person who was teaching you. I would h…