yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Action and reaction forces | Movement and forces | Middle school physics | Khan Academy


4m read
·Nov 10, 2024

You've probably heard the phrase that for every force there's an equal and opposite reaction force, and this is also known as Newton's third law of motion. But it's also one of the most misunderstood laws of physics. So that's why we're going to dig into it a little bit in this video.

I have two examples here where Newton's third law, or this notion of an action and a reaction force, is happening. So over here you have this plane flying, and the plane is able to move forward by pushing air particles through these jet engines. These air particles are pushed outward at a very, very high velocity out the back of the engines. If you were to enlarge one of those air particles—let's say this is this purple dot right over here—there is a force that is being exerted on it by the jet engine, and that force is going in that direction.

So what is the equal and opposite reaction force? Well, the equal and opposite reaction force is not also occurring on that molecule; it's what the molecule is doing to the plane. The equal and opposite reaction force is that the molecule is going to be pushing on the jet engine with an equal but opposite force. So it's going to go in the opposite direction, and that's how the jet is able to accelerate forward—by pushing on these particles and accelerating them backward by exerting a force on them. The equal and opposite force is the force that the particles, those molecules of air, are exerting on the jet and moving it forward.

The same thing here is going on with this rocket. You have some rocket fuel in there; it gets ignited, it explodes, and as it explodes, there's a force that exerts on those little molecules, and that force is going in this direction. But as it does that, there's an equal and opposite force that the molecules are exerting on the rocket. The rocket is having a force acted on it—once again, equal and opposite.

So it's important to realize that the reaction force is not on the same object; it's on the other object. If one object is putting an action force on another, then the second object is putting a reaction force on the first. The forces do not cancel out. It's also important to realize that both forces are generated in pairs and happen at the exact same time. There's no delay.

We can look at other examples of this. This is a scenario that I would never want to be caught in—being drifting through space. Now, this astronaut here has some type of a rocket pack that might help it move around, but let's say your rocket pack ran out of fuel and you're just drifting through space. How can you get back to your spaceship?

Well, if you have a wrench or something on you that you can throw, if you can take that wrench and if you can push that wrench in that direction, and let's say your spaceship is over here to the left, well, the equal and opposite force is the force that the wrench is going to exert on you, the astronaut, and then it will push you in that direction and accelerate you in that direction. So that's a useful thing if you ever get caught drifting through space.

But you can do an experiment right now. Press on the table in front of you. When you press on that table, you're clearly putting a force onto that table. If your table is soft, you will see it get compressed. But notice your finger itself is also getting compressed, and the whole reason why you can even feel that is because your finger is getting compressed, and that is the equal and opposite force that the table is putting on your finger.

And this can happen at very, very large distances as well. The whole reason why the moon is in orbit around the earth is because there's a gravitational force of earth's mass acting on the moon. But there's an equal and opposite force of the moon acting on earth. And it's actually not that the moon is rotating around the earth; it's actually they're both rotating around the center of mass of their combination, that just happens to be so much closer to earth.

It's actually within earth's volume that it looks like the moon is rotating around the earth. And this isn't just celestial bodies. I weigh 165 pounds. That is the force that earth is acting on me due to gravity. But it turns out that there's an equal and opposite force of 165 pounds that I am pulling on earth with.

So I will leave you there. Look around the world; this is happening everywhere. For every force, there's an equal and opposite reaction force, but they don't cancel out because they're acting on different bodies.

More Articles

View All
The Theme System Journal
Hello internet! If you didn’t already know, I’m a big fan of the yearly theme: a broad rainbow above your goals to help direct you on part of your journey through this life. And yes, I know exactly how that sounds. But if you’re intrigued and/or wondering…
Citizenship and voting rights of indigenous people | Citizenship | High school civics | Khan Academy
In this video, I want to give you a very brief overview of the history of citizenship for Indigenous people in the United States. The story of Indigenous people in North America and their citizenship status in the United States is long and complex and is …
Energy equation
In recent years, the amount of CO2 released by humans into the planet has approached 40 billion tons. If you wanted to break that down based on people, we’ve recently crossed 7 billion people on the planet. So that’s going to be approximately 7 billion pe…
Matrix Theory: Relativity Without Relative Space or Time
[Music] Let us consider a classic relativity scenario. Your friend gets on a rocket ship and blasts off towards Mars at nearly the speed of light. During this journey, his clocks tick slower, his lengths contract, and when he arrives at his destination, h…
Identifying quadratic patterns | Polynomial factorization | Algebra 2 | Khan Academy
We’re told that we want to factor the following expression, and they ask us which pattern can we use to factor the expression. U and V are either constant integers or single variable expressions. So we’ll do this one together, and then we’ll have a few mo…
How Do Honeybees Get Their Jobs? | National Geographic
The honeybee is one of the most collaborative insects in the world. Each hive is comprised of thousands of bees working together in order to build and sustain a colony. Within the colony, each bee has a specific role to play, a job. These are jobs like fo…